精英家教网 > 高中数学 > 题目详情

如图,点P(0,-1)是椭圆C1=1(a>b>0)的一个顶点,C1的长轴是圆C2x2y2=4的直径.l1l2是过点P且互相垂直的两条直线,其中l1交圆C2AB两点,l2交椭圆C1于另一点D.
 
(1)求椭圆C1的方程;
(2)求当△ABD的面积取最大值时,直线l1的方程.

(1)y2=1.(2)y=±x-1

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

动点到定点与到定直线,的距离之比为
(1)求的轨迹方程;
(2)过点的直线(与x轴不重合)与(1)中轨迹交于两点.探究是否存在一定点E(t,0),使得x轴上的任意一点(异于点E、F)到直线EM、EN的距离相等?若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆短轴的一个端点为,离心率为.
(1)求椭圆的标准方程;
(2)设直线交椭圆两点,若.求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆Cy2=1,AB是四条直线x=±2,y=±1所围成的两个顶点.
 
(1)设P是椭圆C上任意一点,若mn,求证:动点Q(mn)在定圆上运动,并求出定圆的方程;
(2)若MN是椭圆C上两上动点,且直线OMON的斜率之积等于直线OAOB的斜率之积,试探求△OMN的面积是否为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C1y2=1,椭圆C2C1的长轴为短轴,且与C1有相同的离心率.
(1)求椭圆C2的方程;
(2)设O为坐标原点,点AB分别在椭圆C1C2上,=2,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆M=1(a>)的右焦点为F1,直线lxx轴交于点A,若1=2 (其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆Nx2+(y-2)2=1的任意一条直径(EF为直径的两个端点),求·的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,且经过点. 过它的两个焦点分别作直线交椭圆于A、B两点,交椭圆于C、D两点,且

(1)求椭圆的标准方程;
(2)求四边形的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

F1F2分别是椭圆Ex2=1(0<b<1)的左、右焦点,过F1的直线lE相交于AB两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求|AB|;
(2)若直线l的斜率为1,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知离心率的椭圆一个焦点为.
(1)求椭圆的方程;
(2) 若斜率为1的直线交椭圆两点,且,求直线方程.

查看答案和解析>>

同步练习册答案