精英家教网 > 高中数学 > 题目详情

已知椭圆短轴的一个端点为,离心率为.
(1)求椭圆的标准方程;
(2)设直线交椭圆两点,若.求

(1)椭圆的标准方程;(2).

解析试题分析:(1)由已知得,又联立可解得,从而可求椭圆的标准方程;
(2)先设A(x1,y1),B(x2,y2),把直线方程和椭圆方程联立得到一个关于的二次方程,再利用弦长公式即可求出.
试题解析:(1)由题意可设椭圆C的标准方程为(>>0).
由已知b=1,所以,因为=,∴a2=9,b2=1.
∴椭圆C的标准方程为+y2=1.                 6分
(2)设A(x1,y1),B(x2,y2).由
               8分
∴x1+x2,x1x2
∴|AB|===.
,解得.                12分
考点:椭圆的定义、设而不求思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点P(4,-).
(1)求双曲线的方程.
(2)若点M(3,m)在双曲线上,求证:·=0.
(3)求△F1MF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设抛物线的顶点在原点,准线方程为x=-.
(1)求抛物线的标准方程;
(2)若点P是抛物线上的动点,点P在y轴上的射影是Q,点M,试判断|PM|+|PQ|是否存在最小值,若存在,求出其最小值,若不存在,请说明理由;
(3)过抛物线焦点F作互相垂直的两直线分别交抛物线于A,C,B,D,求四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线lyx,圆Ox2y2=5,椭圆E=1(a>b>0)的离心率e,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,M为CD的中点.

(1)求点M的轨迹方程;
(2)过M作AB的垂线,垂足为N,若存在正常数,使,且P点到A、B 的距离和为定值,求点P的轨迹E的方程;
(3)过的直线与轨迹E交于P、Q两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系xOy中,中心在原点O,焦点在x轴上的椭圆C上的点(2,1)到两焦点的距离之和为4.
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l与椭圆C分别交于AB两点,其中点Ax轴下方,且=3.求过OAB三点的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题:方程表示焦点在轴上的双曲线。命题曲线轴交于不同的两点,若为假命题,为真命题,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点P(0,-1)是椭圆C1=1(a>b>0)的一个顶点,C1的长轴是圆C2x2y2=4的直径.l1l2是过点P且互相垂直的两条直线,其中l1交圆C2AB两点,l2交椭圆C1于另一点D.
 
(1)求椭圆C1的方程;
(2)求当△ABD的面积取最大值时,直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点为F2(1,0),点 在椭圆上.

(1)求椭圆方程;
(2)点在圆上,M在第一象限,过M作圆的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由.

查看答案和解析>>

同步练习册答案