精英家教网 > 高中数学 > 题目详情

设抛物线的顶点在原点,准线方程为x=-.
(1)求抛物线的标准方程;
(2)若点P是抛物线上的动点,点P在y轴上的射影是Q,点M,试判断|PM|+|PQ|是否存在最小值,若存在,求出其最小值,若不存在,请说明理由;
(3)过抛物线焦点F作互相垂直的两直线分别交抛物线于A,C,B,D,求四边形ABCD面积的最小值.

(1)y2=2x.(2)(3)8.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设动点P(x,y)(x≥0)到定点F的距离比到y轴的距离大.记点P的轨迹为曲线C.
(1)求点P的轨迹方程;
(2)设圆M过A(1,0),且圆心M在P的轨迹上,BD是圆M在y轴上截得的弦,当M运动时弦长BD是否为定值?说明理由;
(3)过F作互相垂直的两直线交曲线C于G、H、R、S,求四边形GRHS面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,且离心率.

(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点(不是左右顶点),椭圆的右顶点为,且满足,试判断直线是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

动点到定点与到定直线,的距离之比为
(1)求的轨迹方程;
(2)过点的直线(与x轴不重合)与(1)中轨迹交于两点.探究是否存在一定点E(t,0),使得x轴上的任意一点(异于点E、F)到直线EM、EN的距离相等?若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录如下:
(1)经判断点在抛物线上,试求出的标准方程;
(2)求抛物线的焦点的坐标并求出椭圆的离心率;
(3)过的焦点直线与椭圆交不同两点且满足,试求出直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆+y2=1有两个不同的交点P和Q.
(1)求k的取值范围;
(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量共线?如果存在,求k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题:方程表示焦点在y轴上的椭圆;
命题:双曲线的离心率,若为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆短轴的一个端点为,离心率为.
(1)求椭圆的标准方程;
(2)设直线交椭圆两点,若.求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆M=1(a>)的右焦点为F1,直线lxx轴交于点A,若1=2 (其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆Nx2+(y-2)2=1的任意一条直径(EF为直径的两个端点),求·的最大值.

查看答案和解析>>

同步练习册答案