精英家教网 > 高中数学 > 题目详情

如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,M为CD的中点.

(1)求点M的轨迹方程;
(2)过M作AB的垂线,垂足为N,若存在正常数,使,且P点到A、B 的距离和为定值,求点P的轨迹E的方程;
(3)过的直线与轨迹E交于P、Q两点,求面积的最大值.

(1)(2)(3)

解析试题分析:(1)求动点轨迹方程的步骤,一是设动点坐标M(x, y),二是列出动点满足的条件,三是化简,,四是去杂,x≠0;(2)涉及两个动点问题,往往是通过相关点法求对应轨迹方程,设P(x, y),则,代入M的轨迹方程有,利用椭圆定义解出相关点法也叫转移法,即将未知转移到已知,用未知点坐标表示已知点坐标,是一种化归思想,(3)直线与椭圆位置关系,一般先分析其几何性,再用代数进行刻画.本题中的三角形可分解为两个同底三角形,底长都为,所以三角形面积最大值决定于高,即横坐标差的绝对值,这可结合韦达定理进行列式分析
试题解析:解:(1)设点M的坐标为M(x, y)(x≠0),则 
由AC⊥BD有,即
∴x2+y2=1(x≠0).                        (4分)
(2)设P(x, y),则,代入M的轨迹方程有
,∴P的轨迹为椭圆(除去长轴的两个端点).
要P到A、B的距离之和为定值,则以A、B为焦点,故.
 从而所求P的轨迹方程为.          9分
(3)易知l的斜率存在,设方程为联立9x2+y2=1,有
设P(x1,y1),Q(x2,y2),则
,则

所以当,即也即时,面积取最大值,最大值为.  12分

考点:直接法求轨迹方程,相关点法求轨迹方程,直线与椭圆位置关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆:的离心率,原点到过点,的直线的距离是.
(1)求椭圆的方程;
(2)若椭圆上一动点关于直线的对称点为,求 的取值范围;
(3)如果直线交椭圆于不同的两点,,且,都在以为圆心的圆上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录如下:
(1)经判断点在抛物线上,试求出的标准方程;
(2)求抛物线的焦点的坐标并求出椭圆的离心率;
(3)过的焦点直线与椭圆交不同两点且满足,试求出直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题:方程表示焦点在y轴上的椭圆;
命题:双曲线的离心率,若为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)已知圆Ox2y2=3的半径等于椭圆E=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆O内,且到直线lyx的距离为,点M是直线l与圆O的公共点,设直线l交椭圆E于不同的两点A(x1y1),B(x2y2).

(1)求椭圆E的方程;
(2)求证:|AF|-|BF|=|BM|-|AM|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆短轴的一个端点为,离心率为.
(1)求椭圆的标准方程;
(2)设直线交椭圆两点,若.求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于PQ两点,且|PQ|=3.
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点MN,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C1y2=1,椭圆C2C1的长轴为短轴,且与C1有相同的离心率.
(1)求椭圆C2的方程;
(2)设O为坐标原点,点AB分别在椭圆C1C2上,=2,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数关系,直线lxy=0与以原点为圆心, 以椭圆C的短半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设M是椭圆的上顶点,过点M分别作直线MAMB交椭圆于AB两点,设两直线的斜率分别为k1k2,且k1k2=4,证明:直线AB过定点.

查看答案和解析>>

同步练习册答案