已知椭圆
的右焦点为F2(1,0),点
在椭圆上.![]()
(1)求椭圆方程;
(2)点
在圆
上,M在第一象限,过M作圆
的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由.
科目:高中数学 来源: 题型:解答题
设椭圆M:
=1(a>
)的右焦点为F1,直线l:x=
与x轴交于点A,若
1=2
(其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E,F为直径的两个端点),求
·
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,且经过点
. 过它的两个焦点
,
分别作直线
与
,
交椭圆于A、B两点,
交椭圆于C、D两点,且
.![]()
(1)求椭圆的标准方程;
(2)求四边形
的面积
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数关系,直线l:x-y+
=0与以原点为圆心, 以椭圆C的短半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=4,证明:直线AB过定点
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知△
的两个顶点
的坐标分别是
,
,且
所在直线的斜率之积等于
.
(1)求顶点
的轨迹
的方程,并判断轨迹
为何种圆锥曲线;
(2)当
时,过点
的直线
交曲线
于
两点,设点
关于
轴的对称点为
(
不重合), 试问:直线
与
轴的交点是否是定点?若是,求出定点,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的方程为
,斜率为1的直线不经过原点
,而且与椭圆相交于
两点,
为线段
的中点.
(1)问:直线
与
能否垂直?若能,求
之间满足的关系式;若不能,说明理由;
(2)已知
为
的中点,且
点在椭圆上.若
,求
之间满足的关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com