已知椭圆的右焦点为F2(1,0),点 在椭圆上.
(1)求椭圆方程;
(2)点在圆上,M在第一象限,过M作圆的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由.
科目:高中数学 来源: 题型:解答题
设椭圆M:=1(a>)的右焦点为F1,直线l:x=与x轴交于点A,若1=2 (其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E,F为直径的两个端点),求·的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,且经过点. 过它的两个焦点,分别作直线与,交椭圆于A、B两点,交椭圆于C、D两点,且.
(1)求椭圆的标准方程;
(2)求四边形的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数关系,直线l:x-y+=0与以原点为圆心, 以椭圆C的短半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=4,证明:直线AB过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知△的两个顶点的坐标分别是,,且所在直线的斜率之积等于.
(1)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(2)当时,过点的直线交曲线于两点,设点关于轴的对称点为(不重合), 试问:直线与轴的交点是否是定点?若是,求出定点,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的方程为 ,斜率为1的直线不经过原点,而且与椭圆相交于两点,为线段的中点.
(1)问:直线与能否垂直?若能,求之间满足的关系式;若不能,说明理由;
(2)已知为的中点,且点在椭圆上.若,求之间满足的关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com