精英家教网 > 高中数学 > 题目详情
若函数f(x)=acosx+sinx在x=
π
4
处取得极值,则a的值等于(  )
分析:先求导函数,利用函数f(x)=acosx+sinx在x=
π
4
处取得极值,可得f′(
π
4
)=0,从而可得结论.
解答:解:由题意,f′(x)=-asinx+cosx
∵函数f(x)=acosx+sinx在x=
π
4
处取得极值,
∴f′(
π
4
)=0,
∴-acos
π
4
+sin
π
4
=0
∴a=1
∴0<x<
π
4
时,f′(x)>0,
π
2
>x>
π
4
时,f′(x)<0,
故a=1满足题意,
故选D.
点评:本题以函数的极值为载体,考查导数的运用,考查函数在某点取得极值的条件,关键是利用f′(
π
4
)=0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中是真命题的是
①②
①②
(写出所有你认为是真命题的序号)
①命题p:?x∈R,x2+1≥1;命题q:?x∈R,x2-x+1≤0,则p∧(¬q)是真命题;
②若不等式(m+n)(
a
m
+
1
n
)≥25(a>0)
对?m,n∈R+恒成立,则a的最小值为16;
③函数f(x)=sinx-x的零点有3个;
④若函数f(x)=sin(2x+φ)的图象关于y轴对称,则φ=
π
2

⑤“a,b,c成等比数列”是“b=
ac
”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①已知函数f(x)=(
1
2x-1
)•x2-sinx+a(a为常数)
,且f(loga1000)=3,则f(lglg2)=3;
②若函数f(x)=lg(x2+ax-a)的值域是R,则a∈(-4,0);
③关于x的方程(
1
2
)x=lga
有非负实数根,则实数a的取值范围是(1,10);
④如图,三棱柱ABC-A1B1C1中,E、F分别是AB,AC的中点,平面EB1C1F将三棱柱分成几何体AEF-AB1C1和B1C1-EFCB两部分,其体积分别为V1,V2,则V1:V2=7:5.
其中正确命题的序号是
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=-xex,则下列命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山一模)设函数f(x)对其定义域内的任意实数x1x2都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,则称函数f(x)为上凸函数. 若函数f(x)为上凸函数,则对定义域内任意x1、x2、x3,…,xn都有f(
x1+x2+…+xn
n
)≥
f(x1)+f(x2)+…+f(xn)
n
(当x1=x2=x3=…=xn时等号成立),称此不等式为琴生不等式,现有下列命题:
①f(x)=lnx(x>0)是上凸函数;
②二次函数f(x)=ax2+bx+c(a≠0)是上凸函数的充要条件是a>0;
③f(x)是上凸函数,若A(x1,f(x1)),B(x2,f(x2))是f(x)图象上任意两点,点C在线段AB上,且
AC
CB
,则f(
x1x2
1+λ
)≥
f(x1)+λf(x2)
1+λ

④设A,B,C是一个三角形的三个内角,则sinA+sinB+sinC的最大值是
3
3
2

其中,正确命题的序号是
①③④
①③④
(写出所有你认为正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为an=2n-1,已知函数f(x)=cosx•cos(x-A)-
1
2
cosA
(x∈R).
(Ⅰ)求函数f(x)的最小正周期和最大值;
(Ⅱ)若函数f(x)在x=
π
6
处取得最大值,且
AB
AC
=2
,求△ABC的面积S.

查看答案和解析>>

同步练习册答案