精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别为an=2n-1,已知函数f(x)=cosx•cos(x-A)-
1
2
cosA
(x∈R).
(Ⅰ)求函数f(x)的最小正周期和最大值;
(Ⅱ)若函数f(x)在x=
π
6
处取得最大值,且
AB
AC
=2
,求△ABC的面积S.
分析:(Ⅰ)利用两角和差的正弦公式、余弦公式化简函数f(x)的解析式为一个角的一个三角函数的形式,由此求函数f(x)的最小正周期,求它的最大值.
(Ⅱ)函数f(x)在x=
π
6
处取得最大值,求出A,利用数量积求出bc的值,然后求解三角形的面积.
解答:(本题满分14分)
解:(Ⅰ)依题意,f(x)=cos2xcosA+cosxsinxsinA-
1
2
cosA
…(2分)
=
1
2
(cos2x•cosA+sin2x•sinA)
=
1
2
cos(2x-A)
…(5分)
∴函数f(x)的最小正周期是π,f(x)有最大值
1
2
.       …(7分)
(Ⅱ)由( I)知:由
π
3
-A=2kπ,k∈Z
,得A=
π
3
-2kπ∈(0,π)

A=
π
3

AB
AC
=2
,∴bc=4.
S△ABC=
1
2
bcsinA=
3
…(14分)
点评:本题主要考查两角和差的正弦公式,二倍角公式的应用,函数的周期以及最值的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案