精英家教网 > 高中数学 > 题目详情
2.在数列{an},{bn}中,已知a1=2,b1=4,且-an,bn,an+1成等差数列,-bn,an,bn+1也成等差数列.
(Ⅰ)求证:数列{an+bn}和{an-bn}都是等比数列,并求数列{an}的通项公式;
(Ⅱ)若cn=(an-3n)log3[an-(-1)n],求数列{cn}的前n项和Tn

分析 (I)-an,bn,an+1成等差数列,-bn,an,bn+1也成等差数列.可得bn=$\frac{{a}_{n+1}-{a}_{n}}{2}$,an=$\frac{{b}_{n+1}-{b}_{n}}{2}$,an+bn=$\frac{1}{2}$[(an+1+bn+1)-(an+bn)],即an+1+bn+1=3(an+bn),即可证明数列{an+bn}是首项、公比均为3的等比数列.同理可得:数列{bn-an}是首项为1、公比均为-1的等比数列.可得an=$\frac{({b}_{n}+{a}_{n})-({b}_{n}-{a}_{n})}{2}$.
(II)cn=(2an-3n)log3[2an-(-1)n]=(-1)n•n,利用“错位相减法”与等比数列的求和公式即可得出.

解答 (I)证明:∵-an,bn,an+1成等差数列,-bn,an,bn+1也成等差数列.
∴bn=$\frac{{a}_{n+1}-{a}_{n}}{2}$,an=$\frac{{b}_{n+1}-{b}_{n}}{2}$,
∴an+bn=$\frac{1}{2}$[(an+1+bn+1)-(an+bn)],即an+1+bn+1=3(an+bn),
又∵a1+b1=1+2=3,∴数列{an+bn}是首项、公比均为3的等比数列;
同理可得:-an+bn=$\frac{1}{2}$[(an+1-bn+1)+(-an+bn)],即an+1-bn+1=-(an-bn),
又∵-a1+b1=-1+2=1,
∴数列{bn-an}是首项为1、公比均为-1的等比数列,
∴bn-an=(-1)n+1
又∵bn+an=3n
∴an=$\frac{({b}_{n}+{a}_{n})-({b}_{n}-{a}_{n})}{2}$=$\frac{1}{2}$[3n-(-1)n+1];
(II)解:∵cn=(2an-3n)log3[2an-(-1)n]
=[3n-(-1)n+1-3n]log3[3n-(-1)n+1-(-1)n]
=(-1)n•n,
∴Tn=-1+2-3+4-…+(-1)n•n,
-Tn=1-2+3-4+…+(-1)n•(n-1)+(-1)n+1•n,
两式相减得:2Tn=-1+1-1+1-…-1-(-1)n+1•n,
∴Tn=$\frac{1}{2}${$\frac{-[1-(-1)^{n}]}{1-(-1)}$+(-1)n•n}.

点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.甲、乙两位同学约定周日早上8:00-8:30在学校门口见面,已知他们到达学校的时间是随机的,则甲要等乙至少10分钟才能见面的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{2}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,函数y=2$\sqrt{3}$cos(ωx+φ)(ω>0,0≤φ≤$\frac{π}{2}$)的图象与y轴交于点(0,$\sqrt{6}$),周期是π.
(1)求函数解析式,并写出函数图象的对称轴方程和对称中心;
(2)已知点A($\frac{π}{2}$,0),点P是该函数图象上一点,点Q(x0,y0)是PA的中点,当y0=$\frac{\sqrt{6}}{2}$,x0∈[$\frac{π}{2}$,π]时,求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知0<a<1,函数f(x)=logax.
(1)若f(5a-1)≥f(2a),求实数a的最大值;
(2)当a=$\frac{1}{2}$时,设g(x)=f(x)-3x+2m,若函数g(x)在(1,2)上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点P,其中C1与C3有一个共同的焦点,若M为F1P的中点,则双曲线C1的离心率为(  )
A.$\frac{\sqrt{5}+1}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{2}+1}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,a、b、c是角A、B、C的对边,则下列结论正确的序号是②③.
①若a、b、c成等差数列,则B=$\frac{π}{3}$;               ②若c=4,b=2$\sqrt{3}$,B=$\frac{π}{6}$,则△ABC有两解;
③若B=$\frac{π}{6}$,b=1,ac=2$\sqrt{3}$,则a+c=2+$\sqrt{3}$;     ④若(2c-b)cosA=acosB,则A=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.△ABC中,c=$\sqrt{3}$,b=1,∠B=30°,则△ABC的面积等于(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$或$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若对任意实数x∈R,不等式$x_{\;}^2+m{x_{\;}}+2m-3≥0$恒成立,则实数m的取值范围是(  )
A.[2,6]B.[-6,-2]C.(2,6)D.(-6,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x(a-e-x),曲线y=f(x)上存在不同的两点,使得曲线在这两点处的切线都与y轴垂直,则实数a的取值范围是(  )
A.(-e2,+∞)B.(-e2,0)C.(-e-2,+∞)D.(-e-2,0)

查看答案和解析>>

同步练习册答案