精英家教网 > 高中数学 > 题目详情
17.双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点P,其中C1与C3有一个共同的焦点,若M为F1P的中点,则双曲线C1的离心率为(  )
A.$\frac{\sqrt{5}+1}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{2}+1}{2}$D.$\sqrt{2}$

分析 求出P的坐标,代入抛物线方程,从而求双曲线的离心率.

解答 解:|OF1|=c,|OM|=a,|F1M|=b,
又∵M为PF1的中点,
∴|PF2|=2|OM|=2a,|PF1|=2b,
∵C1与C3有一个共同的焦点,
∴p=2c,
设P(x,y),则x+c=2a,
∴x=2a-c,
∵c•yM=ab,
∴yM=$\frac{ab}{c}$,
∴yP=$\frac{2ab}{c}$,
代入抛物线方程可得$\frac{4{a}^{2}{b}^{2}}{{c}^{2}}$=4c(2a-c),
∵e>1,
∴e=$\frac{\sqrt{5}+1}{2}$.
故选A.

点评 本题考查了学生的作图能力及分析转化的能力,考查了学生数形结合的思想应用,同时考查了双曲线的定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设m,n为两条不同的直线,α为平面,则下列结论正确的是(  )
A.m⊥n,m∥α⇒n⊥αB.m⊥n,m⊥α⇒n∥αC.m∥n,m∥α⇒n∥αD.m∥n,m⊥α⇒n⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=log${\;}_{\frac{1}{3}}$cos(2x-$\frac{π}{3}$)的单调递增区间为(kπ+$\frac{π}{6}$,kπ+$\frac{5π}{12}$)(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若log${\;}_{\sqrt{3}}$x+log${\;}_{\sqrt{3}}$y=2,则3x+2y的最小值为6$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在数列{an},{bn}中,已知a1=2,b1=4,且-an,bn,an+1成等差数列,-bn,an,bn+1也成等差数列.
(Ⅰ)求证:数列{an+bn}和{an-bn}都是等比数列,并求数列{an}的通项公式;
(Ⅱ)若cn=(an-3n)log3[an-(-1)n],求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.近年来,手机已经成为人们日常生活中不可缺少的产品,手机的功能也日趋完善,已延伸到了各个领域,如拍照,聊天,阅读,缴费,购物,理财,娱乐,办公等等,手机的价格差距也很大,为分析人们购买手机的消费情况,现对某小区随机抽取了200人进行手机价格的调查,统计如下:
年龄         价格5000元及以上3000元-4999元1000元-2999元1000元以下
45岁及以下1228664
45岁以上3174624
(Ⅰ)完成关于人们使用手机的价格和年龄的2×2列联表,再判断能否在犯错误的概率不超过0.025的前提下,认为人们使用手机的价格和年龄有关?
(Ⅱ)从样本中手机价格在5000元及以上的人群中选择3人调查其收入状况,设3人中年龄在45岁及以下的人数为随机变量X,求随机变量X的分布列及数学期望.
附K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.050.0250.0100.001
k3.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设F为抛物线C:y2=3x的焦点,过F作直线交抛物线C于A、B两点,O为坐标原点,则△OAB面积的最小值为$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合M={1,2,3},N={z|z=x+y,x∈M,y∈M},则集合N中的元素个数为(  )
A.3B.5C.6D.9

查看答案和解析>>

同步练习册答案