| A. | $\frac{\sqrt{5}+1}{2}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{2}+1}{2}$ | D. | $\sqrt{2}$ |
分析 求出P的坐标,代入抛物线方程,从而求双曲线的离心率.
解答 解:|OF1|=c,|OM|=a,|F1M|=b,
又∵M为PF1的中点,
∴|PF2|=2|OM|=2a,|PF1|=2b,
∵C1与C3有一个共同的焦点,
∴p=2c,
设P(x,y),则x+c=2a,
∴x=2a-c,
∵c•yM=ab,
∴yM=$\frac{ab}{c}$,
∴yP=$\frac{2ab}{c}$,
代入抛物线方程可得$\frac{4{a}^{2}{b}^{2}}{{c}^{2}}$=4c(2a-c),
∵e>1,
∴e=$\frac{\sqrt{5}+1}{2}$.
故选A.
点评 本题考查了学生的作图能力及分析转化的能力,考查了学生数形结合的思想应用,同时考查了双曲线的定义,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | m⊥n,m∥α⇒n⊥α | B. | m⊥n,m⊥α⇒n∥α | C. | m∥n,m∥α⇒n∥α | D. | m∥n,m⊥α⇒n⊥α |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年龄 价格 | 5000元及以上 | 3000元-4999元 | 1000元-2999元 | 1000元以下 |
| 45岁及以下 | 12 | 28 | 66 | 4 |
| 45岁以上 | 3 | 17 | 46 | 24 |
| P(K2≥k) | 0.05 | 0.025 | 0.010 | 0.001 |
| k | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com