精英家教网 > 高中数学 > 题目详情
10.已知0<a<1,函数f(x)=logax.
(1)若f(5a-1)≥f(2a),求实数a的最大值;
(2)当a=$\frac{1}{2}$时,设g(x)=f(x)-3x+2m,若函数g(x)在(1,2)上有零点,求实数m的取值范围.

分析 (1)根据对数函数的性质得到关于a的不等式组,解出即可;
(2)根据g(x)的单调性得到关于m的不等式组,解出即可.

解答 解:(1)∵0<a<1,
∴0<5a-1≤2a,
∴$\frac{1}{5}$<a≤$\frac{1}{3}$,
∴a的最大值是$\frac{1}{3}$;
(2)g(x)在(0,+∞)递减,
∵g(x)在(1,2)上有零点,
∴$\left\{\begin{array}{l}{g(1)=-3+2m>0}\\{g(2)=-1-9+2m<0}\end{array}\right.$,
解得:$\frac{3}{2}$<m<5,
故m的范围是($\frac{3}{2}$,5).

点评 本题考查了函数的单调性问题,考查对数函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在三棱锥P-ABC中,PC⊥平面ABC,∠ACB=45°,BC=2$\sqrt{2}$,AB=2.
(1)求AC的长;
(2)若PC=$\frac{{2\sqrt{3}}}{3}$,点M在侧棱PB上,且$\overrightarrow{BM}=λ\overrightarrow{MP}$,当λ为何值时,二面角B-AC-M的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合A={1,2,6},B={2,3,6},则A∪B={1,2,3,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知M=x2-3x+7,N=-x2+x+1,则(  )
A.M<NB.M>N
C.M=ND.M,N的大小与x的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若log${\;}_{\sqrt{3}}$x+log${\;}_{\sqrt{3}}$y=2,则3x+2y的最小值为6$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知不等式组$\left\{\begin{array}{l}{y≤5}&{\;}\\{2x-y+3≤0}&{\;}\\{x+y-1≥0}&{\;}\end{array}\right.$表示的平面区域为D,若?(x,y)∈D,|x|+2y≤a为真命题,则实数a的取值范围是(  )
A.[10,+∞)B.[11,+∞)C.[13,+∞)D.[14,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在数列{an},{bn}中,已知a1=2,b1=4,且-an,bn,an+1成等差数列,-bn,an,bn+1也成等差数列.
(Ⅰ)求证:数列{an+bn}和{an-bn}都是等比数列,并求数列{an}的通项公式;
(Ⅱ)若cn=(an-3n)log3[an-(-1)n],求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:?x∈R,x2+2x-a>0.若p为真命题,则实数a的取值范围是(  )
A.a>-1B.a<-1C.a≥-1D.a≤-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现,但生猪养殖成本逐月递增.下表是今年前四个月的统计情况:
月份1月份2月份3月份4月份
收购价格(元/斤)6765
养殖成本(元/斤)344.65
现打算从以下两个函数模型:
①y=Asin(ωx+φ)+B,(A>0,ω>0,-π<φ<π),
②y=log2(x+a)+b
中选择适当的函数模型,分别来拟合今年生猪收购价格(元/斤)与相应月份之间的函数关系、养殖成本(元/斤)与相应月份之间的函数关系.
(1)请你选择适当的函数模型,分别求出这两个函数解析式;
(2)按照你选定的函数模型,帮助该部门分析一下,今年该地区生猪养殖户在8月和9月有没有可能亏损?

查看答案和解析>>

同步练习册答案