精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,侧面是菱形,是棱的中点,在线段上,且.

(1)证明:

(2)若,面,求二面角的余弦值.

【答案】(1)详见解析;(2).

【解析】

(1)连接于点,连接,利用三角形相似证明,然后证明

(2)过,以为原点,分别为轴,轴,轴的正方向建立空间直角坐标,

不妨设,求出面的一个法向量,面的一个法向量,然后利用空间向量的数量积求解即可.

解:(1)连接于点,连接

因为,所以,又因为,所以,所以

,所以.

(2)过,因为,所以是线段的中点.

因为面,面,所以.连接

因为是等边三角形,是线段的中点,所以.

如图以为原点,分别为轴,轴,轴的正方向建立空间直角坐标,

不妨设,则

,得的中点.

设面的一个法向量为,则,即

得方程的一组解为,即.

的一个法向量为,则

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为 ,且离心率为 为椭圆上任意一点,当时, 的面积为1.

(1)求椭圆的方程;

(2)已知点是椭圆上异于椭圆顶点的一点,延长直线 分别与椭圆交于点 ,设直线的斜率为,直线的斜率为,求证: 为定值.

【答案】(1);(2)

【解析】试题分析:(1)设由题,由此求出,可得椭圆的方程;

(2)设

当直线的斜率不存在时,可得

当直线的斜率不存在时,同理可得.

当直线的斜率存在时,

设直线的方程为,则由消去通过运算可得

,同理可得,由此得到直线的斜率为

直线的斜率为,进而可得.

试题解析:(1)设由题

解得,则

椭圆的方程为.

(2)设

当直线的斜率不存在时,设,则

直线的方程为代入,可得

,则

直线的斜率为,直线的斜率为

当直线的斜率不存在时,同理可得.

当直线的斜率存在时,

设直线的方程为,则由消去可得:

,则,代入上述方程可得

,则

设直线的方程为,同理可得

直线的斜率为

直线的斜率为

.

所以,直线的斜率之积为定值,即.

型】解答
束】
21

【题目】已知函数 ,在处的切线方程为.

(1)求

(2)若方程有两个实数根 ,且,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,离心率为,直线与椭圆交于不同的两点为椭圆的左顶点.

(1)求椭圆的标准方程;

(2)当的面积为时,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线为参数)和曲线:(为参数).

(1)化的方程为普通方程,并说明它们分别表示什么曲线;

(2)若上的点对应的参数为上的动点,求中点到直线为参数)距离的最小值及此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(,且),且.

(1)求实数的值;

(2)判断函数的奇偶性并证明

(3)若函数有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)如图在三棱锥中, 分别为棱的中点,已知

求证(1)直线平面

(2)平面 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列五个命题不正确的是________.

①若等比数列的公比,则数列单调递增.

②常数列既是等差数列又是等比数列.

③在中,角ABC所对的边分别为abc,若.

④在中,若,则为锐角三角形.

⑤等比数列的前n项和为,对任意正整数m,则仍成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正三棱柱ABC-A1B1C1中,已知DE分别为BCB1C1的中点,点F在棱CC1上,且EFC1D.求证:

1)直线A1E∥平面ADC1

2)直线EF⊥平面ADC1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为,圆的方程为,动圆与圆内切且与圆外切.

(1)求动圆圆心的轨迹的方程;

(2)已知为平面内的两个定点,过点的直线与轨迹交于,两点,求四边形面积的最大值.

查看答案和解析>>

同步练习册答案