【题目】如图,在三棱柱中,侧面是菱形,,是棱的中点,,在线段上,且.
(1)证明:面;
(2)若,面面,求二面角的余弦值.
【答案】(1)详见解析;(2).
【解析】
(1)连接交于点,连接,利用三角形相似证明,然后证明面.
(2)过作于,以为原点,,,分别为轴,轴,轴的正方向建立空间直角坐标,
不妨设,求出面的一个法向量,面的一个法向量,然后利用空间向量的数量积求解即可.
解:(1)连接交于点,连接.
因为,所以,又因为,所以,所以,
又面,面,所以面.
(2)过作于,因为,所以是线段的中点.
因为面面,面面,所以面.连接,
因为是等边三角形,是线段的中点,所以.
如图以为原点,,,分别为轴,轴,轴的正方向建立空间直角坐标,
不妨设,则,,,,,
由,得,的中点,,.
设面的一个法向量为,则,即,
得方程的一组解为,即.
面的一个法向量为,则,
所以二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左、右焦点分别为, ,且离心率为, 为椭圆上任意一点,当时, 的面积为1.
(1)求椭圆的方程;
(2)已知点是椭圆上异于椭圆顶点的一点,延长直线, 分别与椭圆交于点, ,设直线的斜率为,直线的斜率为,求证: 为定值.
【答案】(1);(2)
【解析】试题分析:(1)设由题,由此求出,可得椭圆的方程;
(2)设, ,
当直线的斜率不存在时,可得;
当直线的斜率不存在时,同理可得.
当直线、的斜率存在时,,
设直线的方程为,则由消去通过运算可得
,同理可得,由此得到直线的斜率为,
直线的斜率为,进而可得.
试题解析:(1)设由题,
解得,则,
椭圆的方程为.
(2)设, ,
当直线的斜率不存在时,设,则,
直线的方程为代入,可得,
, ,则,
直线的斜率为,直线的斜率为,
,
当直线的斜率不存在时,同理可得.
当直线、的斜率存在时,,
设直线的方程为,则由消去可得:
,
又,则,代入上述方程可得
,
,则
,
设直线的方程为,同理可得,
直线的斜率为,
直线的斜率为,
.
所以,直线与的斜率之积为定值,即.
【题型】解答题
【结束】
21
【题目】已知函数, ,在处的切线方程为.
(1)求, ;
(2)若方程有两个实数根, ,且,证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线:(为参数)和曲线:(为参数).
(1)化,的方程为普通方程,并说明它们分别表示什么曲线;
(2)若上的点对应的参数为,为上的动点,求中点到直线:(为参数)距离的最小值及此时点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列五个命题不正确的是________.
①若等比数列的公比,则数列单调递增.
②常数列既是等差数列又是等比数列.
③在中,角ABC所对的边分别为a,b,c,若则且.
④在中,若,则为锐角三角形.
⑤等比数列的前n项和为,对任意正整数m,则,,,…仍成等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在正三棱柱ABC-A1B1C1中,已知D,E分别为BC,B1C1的中点,点F在棱CC1上,且EF⊥C1D.求证:
(1)直线A1E∥平面ADC1;
(2)直线EF⊥平面ADC1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆的方程为,圆的方程为,动圆与圆内切且与圆外切.
(1)求动圆圆心的轨迹的方程;
(2)已知与为平面内的两个定点,过点的直线与轨迹交于,两点,求四边形面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com