精英家教网 > 高中数学 > 题目详情
13.已知曲线M:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点是曲线N:y2=8x的焦点F,两曲线交点为P、Q,若$\overrightarrow{PF}$=$\overrightarrow{FQ}$,则曲线M的实轴长为4$\sqrt{2}$-4.

分析 求得抛物线的焦点和准线方程,可得c=2,设出P的坐标,运用抛物线的定义,可得P的坐标,代入双曲线的方程,解得a,进而得到双曲线的实轴长.

解答 解:抛物线y2=8x的焦点F(2,0),准线为x=-2,
由题意可得c=2,
$\overrightarrow{PF}$=$\overrightarrow{FQ}$,则P,F,Q共线,设P(2,n),代入y2=8x,可得n=±4
将P(2,±4)代入双曲线的方程,可得$\frac{4}{{a}^{2}}$-$\frac{16}{{b}^{2}}$=1,且a2+b2=4,
解得a=2$\sqrt{2}$-2,
即有双曲线的实轴长为2a=4$\sqrt{2}$-4.
故答案为:4$\sqrt{2}$-4.

点评 本题考查双曲线的实轴长,注意运用抛物线的定义、方程和性质,点满足双曲线方程,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知四棱锥S-ABCD中,四边形ABCD是直角梯形,∠ABC=∠BAD=90°,SA⊥平面ABCD,SA=AB=BC=1,AD=$\frac{1}{2}$.
(1)求证:平面SDC⊥平面SBC;
(2)求直线SB与平面SDC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x||x|≤2,x∈Z},$B=\left\{{x|\frac{1}{x+1}≤0,x∈R}\right\}$,则A∩∁RB=(  )
A.(-1,2]B.[-1,2]C.{-1,0,1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为90°的两个单位向量,则$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$的夹角为(  )
A.120°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a为实数,且(2+ai)(a-2i)=4-3i,则a=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ12)及N(μ2,σ22),其正态分布的密度曲线如图所示,则下列说法错误的是(  )
A.乙类水果的质量服从的正态分布的参数σ2=1.99
B.甲类水果的质量比乙类水果的质量更集中
C.甲类水果的平均质量μ1=0.4kg
D.甲类水果的平均质量比乙类水果的平均质量小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(2,1),且离心率为$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足$\overrightarrow{OM}$=$\overrightarrow{NO}$,直线PM、PN分别交椭圆于A,B.
(i)求证:直线AB过定点,并求出定点的坐标;
(ii)求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知动圆M恒过点(0,1),且与直线y=-1相切.
(1)求圆心M的轨迹方程;
(2)动直线l过点P(0,-2),且与点M的轨迹交于A、B两点,点C与点B关于y轴对称,求证:直线AC恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|2x-1|+|2x-a|.
(1)当a=2时,求不等式f(x)<2的解集;
(2)当x∈R时,f(x)≥3a+2恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案