精英家教网 > 高中数学 > 题目详情
4.已知集合A={x||x|≤2,x∈Z},$B=\left\{{x|\frac{1}{x+1}≤0,x∈R}\right\}$,则A∩∁RB=(  )
A.(-1,2]B.[-1,2]C.{-1,0,1,2}D.{0,1,2}

分析 先求出集合B,再求出CRB,由此利用交集定义能求出A∩∁RB.

解答 解:∵集合A={x||x|≤2,x∈z}={-2,-1,0,1,2},
$B=\left\{{x|\frac{1}{x+1}≤0,x∈R}\right\}$={x|x<-1},
∴CRB={x|x≥-1},
∴A∩∁RB={-1,0,1,2}.
故选:C.

点评 本题考查的知识点是集合的交集,补集运算,集合的包含关系判断及应用,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若复数z=$\frac{ai}{1+i}$(其中a∈R,i为虚数单位)的虚部为-1,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C的对边分别是a,b,c,其外接圆的半径是1,且满足2(sin2A-sin2C)=($\sqrt{2}$a-b)sinB.
(Ⅰ)求角C的大小;
(Ⅱ)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.等差数列{an}的前n项和为Sn,数列{bn}是等比数列,满足a1=3,b1=1,b2+S2=10,a5-2b2=a3
(1)求数列{an}和{bn}的通项公式;
(2)令cn=an•bn,设数列{cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定义在$(0,\frac{π}{2})$上的函数,f′(x)为其导函数,且$\frac{f(x)}{sinx}<\frac{{{f^'}(x)}}{cosx}$恒成立,则(  )
A.$f(\frac{π}{2})>2f(\frac{π}{6})$B.$\sqrt{3}f(\frac{π}{4})>\sqrt{2}f(\frac{π}{3})$C.$\sqrt{3}f(\frac{π}{6})<f(\frac{π}{3})$D.$f(1)<2f(\frac{π}{6})sin1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.等比数列{an}满足:a1=a(a>0),${a_1}+1{,^{\;}}{a_2}+2{,^{\;}}{a_3}+3$成等比数列,若{an}唯一,则a的值等于$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若${∫}_{1}^{t}$(-$\frac{1}{x}$+2x)dx=3-ln2,则t=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知曲线M:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点是曲线N:y2=8x的焦点F,两曲线交点为P、Q,若$\overrightarrow{PF}$=$\overrightarrow{FQ}$,则曲线M的实轴长为4$\sqrt{2}$-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.
(Ⅰ)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的2×2列联表,并据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?
优秀合格合计
大学组
中学组
合计
注:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(k2≥k00.100.050.005
k02.7063.8417.879
(Ⅱ)若参赛选手共6万人,用频率估计概率,试估计其中优秀等级的选手人数;
(Ⅲ)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6,在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为a,在选出的6名良好等级的选手中任取一名,记其编号为b,求使得方程组$\left\{\begin{array}{l}ax+by=3\\ x+2y=2\end{array}\right.$有唯一一组实数解(x,y)的概率.

查看答案和解析>>

同步练习册答案