精英家教网 > 高中数学 > 题目详情
9.等比数列{an}满足:a1=a(a>0),${a_1}+1{,^{\;}}{a_2}+2{,^{\;}}{a_3}+3$成等比数列,若{an}唯一,则a的值等于$\frac{1}{3}$.

分析 设公比为q,由条件得:aq2-4aq+3a-1=0关于q∈R且q≠0有唯一解,由此能求出结果.

解答 解:设公比为q,
∵等比数列{an}满足:a1=a(a>0),${a_1}+1{,^{\;}}{a_2}+2{,^{\;}}{a_3}+3$成等比数列,
∴(aq+2)2=(a+1)(aq2+3),
整理,得:aq2-4aq+3a-1=0,
∵{an}唯一,∴由条件得:aq2-4aq+3a-1=0关于q∈R且q≠0有唯一解,
注意到a>0,△=16a2-4a(3a-1)>0恒成立,
∴3a-1=0,$a=\frac{1}{3}$(q=0为方程的增解).
故答案为:$\frac{1}{3}$.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{3x+3(x≤-1)}\\{f(x-1)+1(x>-1)}\end{array}\right.$方程f(x)=x+1的解从小到大排成一个数列{an},该数列的前n项的和为Sn,则$\frac{2{S}_{n+3}+10}{n}$的最小值为(  )
A.$\frac{28}{3}$B.$\frac{19}{2}$C.6D.2$\sqrt{10}$+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.把函数$f(x)=\sqrt{2}sin(2x-\frac{π}{4})$的图象上每个点的横坐标扩大到原来的4倍,再向左平移$\frac{π}{3}$,得到函数g(x)的图象,则函数g(x)的一个单调递减区间为(  )
A.$[-\frac{5π}{6},\frac{7π}{6}]$B.$[\frac{7π}{6},\frac{19π}{6}]$C.$[-\frac{2π}{3},\frac{4π}{3}]$D.$[-\frac{17π}{6},-\frac{5π}{6}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$a={(\sqrt{2})^{\frac{4}{3}}}$,$b={2^{\frac{2}{5}}}$,$c={9^{\frac{1}{3}}}$,则(  )
A.b<a<cB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x||x|≤2,x∈Z},$B=\left\{{x|\frac{1}{x+1}≤0,x∈R}\right\}$,则A∩∁RB=(  )
A.(-1,2]B.[-1,2]C.{-1,0,1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线${x^2}-\frac{y^2}{m}=1$的离心率大于$\sqrt{2}$的充要条件是(  )
A.m>1B.$m>\frac{1}{2}$C.m>2D.m≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为90°的两个单位向量,则$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$的夹角为(  )
A.120°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ12)及N(μ2,σ22),其正态分布的密度曲线如图所示,则下列说法错误的是(  )
A.乙类水果的质量服从的正态分布的参数σ2=1.99
B.甲类水果的质量比乙类水果的质量更集中
C.甲类水果的平均质量μ1=0.4kg
D.甲类水果的平均质量比乙类水果的平均质量小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)是定义在R上的奇函数,当x>0时,$f(x)=\frac{1}{2}({|{x-1}|+|{x-2}|-3})$.
(1)求f(x)的解析式;
(2)画出f(x)的图象;
(3)若对任意的x∈R,恒有f(x)≤f(x+a),求正实数a的取值范围.

查看答案和解析>>

同步练习册答案