精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)是定义在R上的奇函数,当x>0时,$f(x)=\frac{1}{2}({|{x-1}|+|{x-2}|-3})$.
(1)求f(x)的解析式;
(2)画出f(x)的图象;
(3)若对任意的x∈R,恒有f(x)≤f(x+a),求正实数a的取值范围.

分析 (1)利用函数f(x)是定义在R上的奇函数,且当x>0时,$f(x)=\frac{1}{2}({|{x-1}|+|{x-2}|-3})$,可求得当x<0时f(x)=-$\frac{1}{2}(|x+1|+|x+2|-3)$,从而可得f(x)的解析式;
(2)由f(x)=$\frac{1}{2}(|x-1|+|x-2|-3)$=$\left\{\begin{array}{l}{x+3,x<-2}\\{1,-2≤x≤-1}\\{-x,-1<x<1}\\{-1,1≤x≤2}\\{x-3,x>2}\end{array}\right.$即可画出f(x)的图象;
(3)依题意,可得f(x+a)的图象恒在f(x)的图象上方或部分重合,所以只需函数y=f(x+a)的图象与x轴最右边的交点P(-a+3,0)在函数y=f(x)的图象与x轴最左边的交点(-3,0)的左侧或与点(-3,0)重合即可求得正实数a的取值范围.

解答 解:(1)∵函数f(x)是定义在R上的奇函数,
当x>0时,$f(x)=\frac{1}{2}({|{x-1}|+|{x-2}|-3})$.
∴当x<0时,-x>0,f(-x)=$\frac{1}{2}(|-x-1|+|-x-2|-3)$=-f(x),
∴f(x)=-$\frac{1}{2}(|x+1|+|x+2|-3)$,
∴f(x)=$\frac{1}{2}(|x-1|+|x-2|-3)$=$\left\{\begin{array}{l}{x+3,x<-2}\\{1,-2≤x≤-1}\\{-x,-1<x<1}\\{-1,1≤x≤2}\\{x-3,x>2}\end{array}\right.$;
(2)画出f(x)的图象如下:

(3)∵a>0,
∴函数y=f(x+a)的图象是函数y=f(x)的图象向左平移a个单位得到的,
又对任意的x∈R,恒有f(x)≤f(x+a),
∴只需f(x+a)的图象恒在f(x)的图象上方或部分重合,
所以只需函数y=f(x+a)的图象与x轴最右边的交点P(-a+3,0)在函数y=f(x)的图象与x轴最左边的交点(-3,0)的左侧或与点(-3,0)重合,
∴-a+3≤-3,
∴a≥6.

点评 本题考查抽象函数及其应用,考查利用函数的奇偶性确定函数解析式及作图能力,对于(3)分析出y=f(x+a)与x轴最右边的交点在y=f(x)与x轴最左边交点的左边或重合是关键,也是难点,考查推理与运算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.等比数列{an}满足:a1=a(a>0),${a_1}+1{,^{\;}}{a_2}+2{,^{\;}}{a_3}+3$成等比数列,若{an}唯一,则a的值等于$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有下列四个命题:
①垂直于同一条直线的两条直线平行;
②垂直于同一条直线的两个平面平行;
③垂直于同一平面的两个平面平行;
④垂直于同一平面的两条直线平行.
其中正确的命题有②④(填写所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知△ABC的面积为$5\sqrt{3}$,$A=\frac{π}{6}$,AB=5,则BC=(  )
A.$2\sqrt{3}$B.$2\sqrt{6}$C.$3\sqrt{2}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.
(Ⅰ)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的2×2列联表,并据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?
优秀合格合计
大学组
中学组
合计
注:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(k2≥k00.100.050.005
k02.7063.8417.879
(Ⅱ)若参赛选手共6万人,用频率估计概率,试估计其中优秀等级的选手人数;
(Ⅲ)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6,在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为a,在选出的6名良好等级的选手中任取一名,记其编号为b,求使得方程组$\left\{\begin{array}{l}ax+by=3\\ x+2y=2\end{array}\right.$有唯一一组实数解(x,y)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=lnx-$\frac{{x}^{2}-a}{x}$,a为常数.
(1)求证:x≥lnx+1;
(2)当a=0时,求y=f(x)•f($\frac{1}{x}$)的最小值;
(3)若不等式f(x)<(a-1)x对?x∈(1,+∞)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现了解到已下情况:
(1)甲不是最高的;(2)最高的是没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步.
可以判断丙参加的比赛项目是跑步.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)=ax2+bx+c(a,b,c∈R),对任意实数x,不等式$2x≤f(x)≤\frac{1}{2}{(x+1)^2}$恒成立,
(Ⅰ)求f(-1)的取值范围;
(Ⅱ)对任意x1,x2∈[-3,-1],恒有|f(x1)-f(x2)|≤1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若△ABC的三边分别为a,b,c,且圆x2+y2=1与直线ax+by+c=0没有公共点,则△ABC一定是(  )
A.钝角三角形B.锐角三角形C.直角三角形D.不能确定

查看答案和解析>>

同步练习册答案