精英家教网 > 高中数学 > 题目详情
14.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现了解到已下情况:
(1)甲不是最高的;(2)最高的是没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步.
可以判断丙参加的比赛项目是跑步.

分析 由(4)可知,乙参加了铅球比赛,由(2)可知乙不是最高的,所以三人中乙身高居中;再由(1)可知,甲是最矮的,参加了跳远,即可得出结论.

解答 解:由(4)可知,乙参加了铅球比赛,由(2)可知乙不是最高的,所以三人中乙身高居中;再由(1)可知,甲是最矮的,参加了跳远,所以丙最高,参加了跑步比赛.
故答案为跑步.

点评 本题考查合情推理,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为90°的两个单位向量,则$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$的夹角为(  )
A.120°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知动圆M恒过点(0,1),且与直线y=-1相切.
(1)求圆心M的轨迹方程;
(2)动直线l过点P(0,-2),且与点M的轨迹交于A、B两点,点C与点B关于y轴对称,求证:直线AC恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)是定义在R上的奇函数,当x>0时,$f(x)=\frac{1}{2}({|{x-1}|+|{x-2}|-3})$.
(1)求f(x)的解析式;
(2)画出f(x)的图象;
(3)若对任意的x∈R,恒有f(x)≤f(x+a),求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知α为第二象限角.且sin2α=-$\frac{24}{25}$,则cosα-sinα的值为(  )
A.$\frac{7}{5}$B.-$\frac{7}{5}$C.$\frac{1}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知tanx=$\sqrt{3}$,则x的集合为(  )
A.{x|x=2kπ+$\frac{4π}{3}$,k∈Z}B.{x|x=2kπ+$\frac{π}{3}$,k∈Z}C.{$\frac{4π}{3}$,$\frac{π}{3}$}D.{x|x=kπ+$\frac{π}{3}$,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|2x-1|+|2x-a|.
(1)当a=2时,求不等式f(x)<2的解集;
(2)当x∈R时,f(x)≥3a+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知四面体ABCD中,∠BAC=∠BAD=60°,∠CAD=90°,$AB=2\sqrt{2}$,AC=3,AD=4,则四面体ABCD的体积V=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.方程|cos(x+$\frac{π}{2}$)|=|log18x|的解的个数为12.(用数值作答)

查看答案和解析>>

同步练习册答案