精英家教网 > 高中数学 > 题目详情
9.已知α为第二象限角.且sin2α=-$\frac{24}{25}$,则cosα-sinα的值为(  )
A.$\frac{7}{5}$B.-$\frac{7}{5}$C.$\frac{1}{5}$D.-$\frac{1}{5}$

分析 由α的范围和三角函数值的符号判断出cosα-sinα的符号,由条件、平方关系、二倍角的正弦函数求出cosα-sinα的值.

解答 解:∵α为第二象限角,∴cosα-sinα<0,
∵sin2α=-$\frac{24}{25}$,
∴cosα-sinα=-$\sqrt{(cosα-sinα)^{2}}$=$-\sqrt{1-sin2α}$
=$-\sqrt{1+\frac{24}{25}}$=$-\frac{7}{5}$,
故选B.

点评 本题考查二倍角的正弦函数,平方关系,以及三角函数值的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若${∫}_{1}^{t}$(-$\frac{1}{x}$+2x)dx=3-ln2,则t=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则下列说法错误的是(  )
A.ω=π
B.φ=$\frac{π}{4}$
C.f(x)的单调减区间为(2k-$\frac{1}{4}$,2k+$\frac{3}{4}$),k∈Z
D.f(x)的对称中心是(k+$\frac{1}{4}$,0),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.
(Ⅰ)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的2×2列联表,并据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?
优秀合格合计
大学组
中学组
合计
注:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(k2≥k00.100.050.005
k02.7063.8417.879
(Ⅱ)若参赛选手共6万人,用频率估计概率,试估计其中优秀等级的选手人数;
(Ⅲ)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6,在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为a,在选出的6名良好等级的选手中任取一名,记其编号为b,求使得方程组$\left\{\begin{array}{l}ax+by=3\\ x+2y=2\end{array}\right.$有唯一一组实数解(x,y)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列{an}中,公差d≠0,a4=10,且a3,a6,a10成等比数列,则数列{an}前9项的和为(  )
A.99B.90C.84D.70

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现了解到已下情况:
(1)甲不是最高的;(2)最高的是没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步.
可以判断丙参加的比赛项目是跑步.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若无论实数a取何值时,直线ax+y+a+1=0与圆x2+y2-2x-2y+b=0都相交,则实数b的取值范围.(  )
A.(-∞,2)B.(2,+∞)C.(-∞,-6)D.(-6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知平面向量$\overrightarrow a,\overrightarrow b$满足$\overrightarrow b•(\overrightarrow a+\overrightarrow b)=3$,且$|\overrightarrow a|=1,|\overrightarrow b|=2$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x-a-lnx(a∈R).
(1)若f(x)≥0恒成立,求实数a的取值范围;
(2)证明:若0<x1<x2,则x1lnx1-x1lnx2>x1-x2

查看答案和解析>>

同步练习册答案