5£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµãP£¨2£¬1£©£¬ÇÒÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÉèOÎª×ø±êÔ­µã£¬ÔÚÍÖÔ²¶ÌÖáÉÏÓÐÁ½µãM£¬NÂú×ã$\overrightarrow{OM}$=$\overrightarrow{NO}$£¬Ö±ÏßPM¡¢PN·Ö±ð½»ÍÖÔ²ÓÚA£¬B£®
£¨i£©ÇóÖ¤£ºÖ±ÏßAB¹ý¶¨µã£¬²¢Çó³ö¶¨µãµÄ×ø±ê£»
£¨ii£©Çó¡÷OABÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨¢ñ£©ÓÉÀëÐÄÂʹ«Ê½£¬½«P´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨¢ò£©£¨i£©ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+t£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃÖ±Ïߵĵãбʽ·½³Ì£¬ÇóµÃMºÍNµã×ø±ê£¬ÓÉ$\overrightarrow{OM}$=$\overrightarrow{NO}$£¬ÀûÓÃΤ´ï¶¨Àí£¬»¯¼òµ±t=-2ʱ£¬¶ÔÈÎÒâµÄk¶¼³ÉÁ¢£¬Ö±ÏßAB¹ý¶¨µãQ£¨0£¬-2£©£»
£¨ii£©S¡÷OAB=Ø­S¡÷OQA-S¡÷OQBØ­=Ø­x1-x2Ø­£¬ÓÉΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊ£¬¼´¿ÉÇóµÃ¡÷OABÃæ»ýµÄ×î´óÖµ£®

½â´ð ½â£º£¨¢ñ£©ÓÉÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{3}}{2}$£¬Ôòa2=4b2£¬
½«P£¨2£¬1£©´úÈëÍÖÔ²$\frac{{x}^{2}}{4{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¬Ôò$\frac{1}{{b}^{2}}+\frac{1}{{b}^{2}}=1$£¬½âµÃ£ºb2=2£¬Ôòa2=8£¬
¡àÍÖÔ²µÄ·½³ÌΪ£º$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$£»
£¨¢ò£©£¨i£©µ±M£¬N·Ö±ðÊǶÌÖáµÄ¶Ëµãʱ£¬ÏÔȻֱÏßABΪyÖᣬËùÒÔÈôÖ±Ïß¹ý¶¨µã£¬Õâ¸ö¶¨µãÒ»µãÔÚyÖáÉÏ£¬
µ±M£¬N²»ÊǶÌÖáµÄ¶Ëµãʱ£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+t£¬ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1}\\{y=kx+t}\end{array}\right.$£¬£¨1+4k2£©x2+8ktx+4t2-8=0£¬
Ôò¡÷=16£¨8k2-t2+2£©£¾0£¬
x1+x2=-$\frac{8kt}{4{k}^{2}+1}$£¬x1x2=$\frac{4{t}^{2}-8}{4{k}^{2}+1}$£¬
ÓÖÖ±ÏßPAµÄ·½³ÌΪy-1=$\frac{{y}_{1}-1}{{x}_{1}-2}$£¨x-2£©£¬
¼´y-1=$\frac{k{x}_{1}+t-1}{{x}_{1}-2}$£¨x-2£©£¬
Òò´ËMµã×ø±êΪ£¨0£¬$\frac{£¨1-2k£©{x}_{1}-2t}{{x}_{1}-2}$£©£¬Í¬Àí¿ÉÖª£ºN£¨0£¬$\frac{£¨1-2k£©{x}_{2}-2t}{{x}_{2}-2}$£©£¬
ÓÉ$\overrightarrow{OM}$=$\overrightarrow{NO}$£¬Ôò$\frac{£¨1-2k£©{x}_{1}-2t}{{x}_{1}-2}$+$\frac{£¨1-2k£©{x}_{2}-2t}{{x}_{2}-2}$=0£¬
»¯¼òÕûÀíµÃ£º£¨2-4k£©x1x2-£¨2-4k+2t£©£¨x1+x2£©+8t=0£¬
Ôò£¨2-4k£©¡Á$\frac{4{t}^{2}-8}{4{k}^{2}+1}$-£¨2-4k+2t£©£¨-$\frac{8kt}{4{k}^{2}+1}$£©+8t=0£¬
»¯¼òÕûÀíµÃ£º£¨2t+4£©k+£¨t2+t-2£©=0£¬
µ±ÇÒ½öµ±t=-2ʱ£¬¶ÔÈÎÒâµÄk¶¼³ÉÁ¢£¬Ö±ÏßAB¹ý¶¨µãQ£¨0£¬-2£©£»
£¨ii£©ÓÉ£¨i£©¿ÉÖª£ºS¡÷OAB=Ø­S¡÷OQA-S¡÷OQBØ­=Ø­$\frac{1}{2}$Ø­OQØ­•Ø­x1Ø­-$\frac{1}{2}$Ø­OQØ­•Ø­x2حح£¬
=$\frac{1}{2}$¡Á2¡ÁØ­x1-x2Ø­=Ø­x1-x2Ø­=$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$£¬
$\sqrt{£¨\frac{16k}{4{k}^{2}+1}£©^{2}-4¡Á\frac{8}{4{k}^{2}+1}}$=4$\sqrt{\frac{8{k}^{2}-2}{£¨4{k}^{2}+1£©^{2}}}$£¬
Áî4k2+1=u£¬ÔòS¡÷OAB=4$\sqrt{\frac{2u-4}{{u}^{2}}}$£¬
=4$\sqrt{-£¨\frac{2}{u}-\frac{1}{2}£©^{2}+\frac{1}{4}}$¡Ü2£¬
¼´µ±$\frac{2}{u}$=$\frac{1}{2}$£¬u=4£¬¼´k=¡À$\frac{\sqrt{3}}{2}$ʱ£¬µÈºÅ³ÉÁ¢£¬
¡à¡÷OABÃæ»ýµÄ×î´óÖµ2£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½£¬¿¼²éÍÖÔ²Ó뺯Êý×îÖµµÃ×ÛºÏÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðÊÇa£¬b£¬c£¬ÆäÍâ½ÓÔ²µÄ°ë¾¶ÊÇ1£¬ÇÒÂú×ã2£¨sin2A-sin2C£©=£¨$\sqrt{2}$a-b£©sinB£®
£¨¢ñ£©Çó½ÇCµÄ´óС£»
£¨¢ò£©Çó¡÷ABCÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èô${¡Ò}_{1}^{t}$£¨-$\frac{1}{x}$+2x£©dx=3-ln2£¬Ôòt=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÇúÏßM£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÓÒ½¹µãÊÇÇúÏßN£ºy2=8xµÄ½¹µãF£¬Á½ÇúÏß½»µãΪP¡¢Q£¬Èô$\overrightarrow{PF}$=$\overrightarrow{FQ}$£¬ÔòÇúÏßMµÄʵÖ᳤Ϊ4$\sqrt{2}$-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Éèa=£¨$\frac{5}{3}$£©${\;}^{\frac{1}{6}}$£¬b=£¨$\frac{3}{5}$£©${\;}^{-\frac{1}{5}}$£¬c=ln$\frac{5}{3}$£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
A£®a£¾b£¾cB£®b£¾a£¾cC£®b£¾c£¾aD£®a£¾c£¾b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÓÐÏÂÁÐËĸöÃüÌ⣺
¢Ù´¹Ö±ÓÚͬһÌõÖ±ÏßµÄÁ½ÌõÖ±Ï߯½ÐУ»
¢Ú´¹Ö±ÓÚͬһÌõÖ±ÏßµÄÁ½¸öÆ½ÃæÆ½ÐУ»
¢Û´¹Ö±ÓÚÍ¬Ò»Æ½ÃæµÄÁ½¸öÆ½ÃæÆ½ÐУ»
¢Ü´¹Ö±ÓÚÍ¬Ò»Æ½ÃæµÄÁ½ÌõÖ±Ï߯½ÐУ®
ÆäÖÐÕýÈ·µÄÃüÌâÓТڢܣ¨ÌîдËùÓÐÕýÈ·ÃüÌâµÄ±àºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼¦Ð£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬ÔòÏÂÁÐ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®¦Ø=¦Ð
B£®¦Õ=$\frac{¦Ð}{4}$
C£®f£¨x£©µÄµ¥µ÷¼õÇø¼äΪ£¨2k-$\frac{1}{4}$£¬2k+$\frac{3}{4}$£©£¬k¡ÊZ
D£®f£¨x£©µÄ¶Ô³ÆÖÐÐÄÊÇ£¨k+$\frac{1}{4}$£¬0£©£¬k¡ÊZ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®´«³Ð´«Í³ÎÄ»¯ÔÙÏÆÈȳ±£¬ÑëÊÓ¿Æ½ÌÆµµÀÒÔÊ«´Ê֪ʶ¾ºÈüΪÖ÷µÄ¡¶ÖйúÊ«´Ê´ó»á¡·»ð±¬Ó«ÆÁ£®½«ÖÐѧ×éºÍ´óѧ×éµÄ²ÎÈüÑ¡ÊÖ°´³É¼¨·ÖΪÓÅÐã¡¢Á¼ºÃ¡¢Ò»°ãÈý¸öµÈ¼¶£¬Ëæ»ú´ÓÖгéÈ¡ÁË100ÃûÑ¡ÊÖ½øÐе÷²é£¬ÏÂÃæÊǸù¾Ýµ÷²é½á¹û»æÖƵÄÑ¡Êֵȼ¶ÈËÊýµÄÌõÐÎͼ£®
£¨¢ñ£©Èô½«Ò»°ãµÈ¼¶ºÍÁ¼ºÃµÈ¼¶ºÏ³ÆÎªºÏ¸ñµÈ¼¶£¬¸ù¾ÝÒÑÖªÌõ¼þÍê³ÉÏÂÃæµÄ2¡Á2ÁÐÁª±í£¬²¢¾Ý´Ë×ÊÁÏÄãÊÇ·ñÓÐ95%µÄ°ÑÎÕÈÏΪѡÊֳɼ¨¡°ÓÅÐ㡱ÓëÎÄ»¯³Ì¶ÈÓйأ¿
ÓÅÐãºÏ¸ñºÏ¼Æ
´óѧ×é
ÖÐѧ×é
ºÏ¼Æ
×¢£º${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£®
P£¨k2¡Ýk0£©0.100.050.005
k02.7063.8417.879
£¨¢ò£©Èô²ÎÈüÑ¡ÊÖ¹²6ÍòÈË£¬ÓÃÆµÂʹÀ¼Æ¸ÅÂÊ£¬ÊÔ¹À¼ÆÆäÖÐÓÅÐãµÈ¼¶µÄÑ¡ÊÖÈËÊý£»
£¨¢ó£©ÔÚÓÅÐãµÈ¼¶µÄÑ¡ÊÖÖÐÈ¡6Ãû£¬ÒÀ´Î±àºÅΪ1£¬2£¬3£¬4£¬5£¬6£¬ÔÚÁ¼ºÃµÈ¼¶µÄÑ¡ÊÖÖÐÈ¡6Ãû£¬ÒÀ´Î±àºÅΪ1£¬2£¬3£¬4£¬5£¬6£¬ÔÚÑ¡³öµÄ6ÃûÓÅÐãµÈ¼¶µÄÑ¡ÊÖÖÐÈÎȡһÃû£¬¼ÇÆä±àºÅΪa£¬ÔÚÑ¡³öµÄ6ÃûÁ¼ºÃµÈ¼¶µÄÑ¡ÊÖÖÐÈÎȡһÃû£¬¼ÇÆä±àºÅΪb£¬ÇóʹµÃ·½³Ì×é$\left\{\begin{array}{l}ax+by=3\\ x+2y=2\end{array}\right.$ÓÐΨһһ×éʵÊý½â£¨x£¬y£©µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªÆ½ÃæÏòÁ¿$\overrightarrow a£¬\overrightarrow b$Âú×ã$\overrightarrow b•£¨\overrightarrow a+\overrightarrow b£©=3$£¬ÇÒ$|\overrightarrow a|=1£¬|\overrightarrow b|=2$£¬ÔòÏòÁ¿$\overrightarrow a$Óë$\overrightarrow b$µÄ¼Ð½Ç£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{3}$C£®$\frac{2¦Ð}{3}$D£®$\frac{5¦Ð}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸