精英家教网 > 高中数学 > 题目详情
18.把函数y=sin(5x-$\frac{π}{2}$)的图象向右平移$\frac{π}{4}$个单位长度,再把所得图象上各点的横坐标缩短为原来的$\frac{1}{2}$,纵坐标不变,所得图象对应的函数解析式为(  )
A.y=sin(10x-$\frac{3}{4}$π)B.y=sin(10x-$\frac{7}{2}$π)C.y=sin(10x-$\frac{3}{2}$x)D.y=sin(10x-$\frac{7}{4}$π)

分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,可得结论.

解答 解:把函数y=sin(5x-$\frac{π}{2}$)的图象向右平移$\frac{π}{4}$个单位长度,可得函数y=sin[5(x-$\frac{π}{4}$)-$\frac{π}{2}$]=sin(5x-$\frac{7π}{4}$)的图象;
再把所得图象上各点的横坐标缩短为原来的$\frac{1}{2}$,纵坐标不变,
所得图象对应的函数解析式为y=sin(10x-$\frac{7π}{4}$),
故选:D.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在△ABC中,$\overrightarrow{CA}$=$\overrightarrow{a}$,$\overrightarrow{CB}$=$\overrightarrow{b}$,$\overrightarrow{a}$-$\overrightarrow{b}$表示为$\overrightarrow{BA}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.制造容积为$\frac{π}{2}$立方米的无盖圆柱形桶,用来做底面的金属板的价格为每平方米30元,用来做侧面的金属板的价格为每平方米20元,要使用料成本最低,则此圆柱形桶的底面半径和高分别为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球不喜爱打篮球合计
男生5
女生10
合计50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(1)请将上面的列联表补充完整;
(2)是否有99%以上的把握认为喜爱打篮球与性别有关?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.有5个球,其中2个一样的黑球,红、白、蓝球各1个,现从中取出4个球排成一列,则所有不同的排法种数是(  )
A.72B.60C.120D.54

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.用反证法证明命题:“若(a-1)(b-1)(c-1)>0,则a,b,c中至少有一个大于1”时,下列假设中正确的是(  )
A.假设a,b,c都大于1B.假设a,b,c中至多有一个大于1
C.假设a,b,c都不大于1D.假设a,b,c中至多有两个大于1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足a1=3,an+an-1=4n(n≥2)
(Ⅰ)求证:数列{an}的奇数项,偶数项均构成等差数列;
(Ⅱ)求{an}的通项公式;
(Ⅲ)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E是PD的中点.
(1)证明:PB∥平面AEC;
(2)设$AP=1,AD=\sqrt{3}$,三棱锥P-ABD的体积$V=\frac{{\sqrt{3}}}{4}$,求AC与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}中,a1=4,an=3an-1+2n-1(n≥2),求数列{an}的通项公式an

查看答案和解析>>

同步练习册答案