精英家教网 > 高中数学 > 题目详情
在椭圆上找一点,使这一点到直线的距离为最小,并求最小值。
椭圆的参数方程的运用,来研究点到直线的距离公式的运用。

试题分析:解:设椭圆的参数方程为,      3分
      7分
    10分
时,,此时所求点为   .12分
法2:设直线x-2y+m=0利用方程组也可求解。
点评:考查了点到直线的距离公式的运用,以及椭圆参数方程的运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知中心在坐标原点焦点在轴上的椭圆C,其长轴长等于4,离心率为
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆的左,右焦点。
(Ⅰ)若是第一象限内该椭圆上的一点,且,求点的坐标。
(Ⅱ)设过定点的直线与椭圆交于不同的两点,且为锐角(其中O为坐标原点),求直线的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是过抛物线焦点的弦,,则中点的横坐标是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C以抛物线的焦点为右焦点,且经过点A(2,3).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若分别为椭圆的左右焦点,求的角平分线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知M (-3,0)﹑N (3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m (mm0),点P的轨迹加上MN两点构成曲线C.
求曲线C的方程并讨论曲线C的形状;
(2) 若,曲线C过点Q (2,0) 斜率为的直线与曲线C交于不同的两点ABAB中点为R,直线OR (O为坐标原点)的斜率为,求证 为定值;
(3) 在(2)的条件下,设,且,求y轴上的截距的变化范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点与椭圆的右焦点重合.(Ⅰ)求抛物线的方程;
(Ⅱ)动直线恒过点与抛物线交于AB两点,与轴交于C点,请你观察并判断:在线段MAMBMCAB中,哪三条线段的长总能构成等比数列?说明你的结论并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知过抛物线y2 =2px(p>0)的焦点F的直线x-my+m=0与抛物线交于A,B两点,且△OAB(O为坐标原点)的面积为2,则m6+ m4的值为(   )
A.1B. 2 C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C:+=1(a>b>0)的左、右焦点分别为F、F,A是椭圆C上的一点,AF⊥FF,O是坐标原点,OB垂直AF于B,且OF=3OB.

(Ⅰ)求椭圆C的离心率;
(Ⅱ)求t∈(0,b),使得命题“设圆x+y=t上任意点M(x,y)处的切线交椭圆C于Q、Q两点,那么OQ⊥OQ”成立.

查看答案和解析>>

同步练习册答案