精英家教网 > 高中数学 > 题目详情
如图,已知椭圆C:+=1(a>b>0)的左、右焦点分别为F、F,A是椭圆C上的一点,AF⊥FF,O是坐标原点,OB垂直AF于B,且OF=3OB.

(Ⅰ)求椭圆C的离心率;
(Ⅱ)求t∈(0,b),使得命题“设圆x+y=t上任意点M(x,y)处的切线交椭圆C于Q、Q两点,那么OQ⊥OQ”成立.
(1)椭圆C的离心率为. (2)t=b∈(0,b)使得所述命题成

试题分析:解:(Ⅰ)解法一:由题设AF⊥FF及F(-c,0),F(c,0),不妨设点A(c,y),其中y>0,由于点A在椭圆上,有+=1,
+=1,解得y=,从而得到A.              1分
直线AF的方程为y=(x+c),整理得bx-2acy+bc=0.     2分
由题设,原点O到直线AF的距离为|OF|,即=,   3分
将c=a-b代入原式并化简得a=2b,即a=b.
∴e==.即椭圆C的离心率为.                 4分
解法二:点A的坐标为.                               1分
过点O作OB⊥AF,垂足为B,易知△FBC∽△FFA,
=.                                           2分
由椭圆定义得|AF|+|AF|=2a,又|BO|=|OF|,
所以=.                                   3分
解得|FA|=,而|FA|=,得=.                    
∴e==.即椭圆C的离心率为.                 4分
(Ⅱ)圆x+y=t上的任意点M(x,y)处的切线方程为xx+yy=t. 5分
当t∈(0,b)时,圆x+y=t上的任意点都在椭圆内,故此圆在点A处的切线必交椭圆于两个不同的点Q、Q,因此点Q(x,y),Q(x,y)的坐标是方程组
的解.                                        6分
(1)当y0时,由①式得y=.代入②式,得x+2=2b
即(2x+y)x-4txx+2t-2by=0.                        7分
于是x+x=,xx=
yy=·=
==.
若QQ⊥QQ,则xx+ yy=+==0.
所以,3t-2b(x+y)=0.                               8分
在区间(0,b)内,此方程的解为t=b.              9分
(2)当y=0时,必有x0,
同理求得在区间(0,b)内的解为t=b.              10分
另一方面,当t=b时,可推出xx+ yy=0,从而QQ⊥QQ.        11分
综上所述,t=b∈(0,b)使得所述命题成立.                12分
点评:解决的关键是熟练的根据椭圆的性质来求解方程,同时借助与联立方程组的思想和韦达定理来表示得到参数的取值范围,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

在同一平面直角坐标系中,经过坐标伸缩变换后,曲线C变为曲线,则曲线C的方程为 (  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在椭圆上找一点,使这一点到直线的距离为最小,并求最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点在以点为焦点的抛物线上,则等于__________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线的准线与轴交于,焦点为,若椭圆为焦点、且离心率为.                   
(1)当时,求椭圆的方程;
(2)若抛物线与直线轴所围成的图形的面积为,求抛物线和直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线L交抛物线y=2x于M(x,y),N(x,y)两点. ⑴写出直线L的方程;⑵求xx与yy的值;⑶求证:OM⊥ON

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在极坐标系中,已知圆经过点,圆心为直线与极轴的交点,求圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线与双曲线的右支交于不同的两点,那么的取值范围是(  )
A.(B.(
C.(D.(

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,点到两点的距离之和等于4,设点的轨迹为
(Ⅰ)写出的方程;
(Ⅱ)设直线交于两点.k为何值时?此时的值是多少?

查看答案和解析>>

同步练习册答案