精英家教网 > 高中数学 > 题目详情
18.已知△ABC的三边长为 a、b、c,且其中任意两边长均不相等.若a、b、c成等差数列.
(1)比较$\sqrt{\frac{b}{a}}$与$\sqrt{\frac{c}{b}}$的大小,并证明你的结论;
(2)求证角B不可能超过$\frac{π}{3}$.

分析 (1)由条件可得2b=a+c,利用基本不等式可得b2≥ac,再利用分析法即可证明;
(2)由条件得到2b=a+c,再由余弦定理表示出cosB,两式联立消去b,得到关于a与c的关系式,整理后利用基本不等式变形,可得出cosB的范围,利用余弦函数的图象与性质,以及特殊角的三角函数值,根据B为三角形的内角,即可求出B的范围.

解答 解:(1)∵△ABC的三边a,b,c成等差数列,∴2b=a+c,
∴b=$\frac{a+c}{2}$≥$\sqrt{ac}$,∴b2≥ac.
要证$\sqrt{\frac{b}{a}}$≥$\sqrt{\frac{c}{b}}$,
只要证$\frac{b}{a}$≥$\frac{c}{b}$,
只要证b2≥ac,
故$\sqrt{\frac{b}{a}}$≥$\sqrt{\frac{c}{b}}$成立
(2)证明:△ABC的三边a,b,c成等差数列,∴2b=a+c,
再根据 cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{3({a}^{2}+{c}^{2})}{8ac}$-$\frac{1}{4}$≥$\frac{6ac}{8ac}$-$\frac{1}{4}$=$\frac{1}{2}$,
∴B∈(0,$\frac{π}{3}$],
∴角B不可能超过$\frac{π}{3}$.

点评 此题考查了余弦定理,等差、等比数列的性质,以及基本不等式的运用,熟练掌握定理及性质是解本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设命题p:方程x2+m2y2=1表示焦点在y轴上的椭圆,命题q:在平面直角坐标系xOy中,圆x2+y2=4上至少有三个点到直线3x-4y+m-5=0的距离为1,若p且q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立地做了10次和 15次试验,并且利用最小二乘法,求得回归方程所对应的直线分别为l1:y=0.7x-0.5和l2:y=0.8x-1,则这两个人在试验中发现对变量x的观测数据的平均值S与对变量y的观测数据的平均值t的和是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(α)=$\frac{{sin({π-α})cos({2π-α})tan({-α+\frac{3π}{2}})}}{{cos({-π-α})}}$
(1)求f(-$\frac{31π}{3}$)
(2)若2f(π+α)=f($\frac{π}{2}$+α),求$\frac{sinα+cosα}{sinα-cosα}$+cos2α
(3)若f(α)=$\frac{3}{5}$,求sinα,cosα

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+4.
(1)求y=f(x)的表达式;
(2)求直线y=2x+4与y=f(x)所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.对具有线性相关关系的变量x,y,测得一组数据如下:
x24568
y2040607080
根据以上数据,利用最小二乘法得它们的回归直线方程为$\stackrel{∧}{y}$=10.5x+$\stackrel{∧}{a}$,据此模型来预测当x=20时,y的估计值为211.5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,若正四棱锥P-ABCD的底面边长为2,斜高为$\sqrt{5}$,则该正四棱锥的体积为$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系中,已知向量$\overrightarrow{a}$=(-1,2),又点A(8,0),B(n,t),C(ksinθ,t)(0$≤θ≤\frac{π}{2}$).
(1)若$\overrightarrow{AB}$$⊥\overrightarrow{a}$且|$\overrightarrow{AB}$|=$\sqrt{5}$|$\overrightarrow{OA}$|,求向量$\overrightarrow{OB}$;
(2)若向量$\overrightarrow{AC}$与向量$\overrightarrow{a}$共线,常数k>0,当tsinθ取最大值为4时,求$\overrightarrow{OA}$$•\overrightarrow{OC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若圆的极坐标方程为ρ=2,则该圆的面积为4π.

查看答案和解析>>

同步练习册答案