精英家教网 > 高中数学 > 题目详情
设b和c分别是先后抛掷一枚骰子得到的点数,求方程x2+bx+c=0有实根的概率.
考点:等可能事件的概率
专题:概率与统计
分析:本题是一个等可能事件的概率,试验发生包含的事件数是6×6=36种结果,方程x2+bx+c=0有实根要满足判别式不小于0,列举出结果.
解答: 解:由题意知本题是一个等可能事件的概率,
试验发生包含的事件数是6×6=36种结果,
方程x2+bx+c=0有实根要满足b2-4c≥0,
当b=2,c=1
b=3,c=1,2
b=4,c=1,2,3,4
b=5,c=1,2,3,4,5,6,
b=6,c=1,2,3,4,5,6
综上可知共有1+2+4+6+6=19种结果
∴方程x2+bx+c=0有实根的概率是
19
36
点评:本题考查等可能事件的概率,在解题过程中主要应用列举法来列举出所有的满足条件的事件数,这是本题的精华部分.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的面积公式为S=πab(其中a为椭圆的长半轴长,b为椭圆的短半轴长),在如图所示矩形框内随机选取400个点,估计这400个点中属于阴影部分的点约有(  )
A、100个B、200个
C、300个D、400个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=1,且an=2an-1+1(n≥2),则a6=(  )
A、15B、31C、62D、63

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙C:x2+(y-3)2=4,一动直线l过A(-1,0)与⊙C相交于P、Q两点,M是PQ的中点,弦PQ长为2
3
时,求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+x(a∈R,a≠0).
(1)求证:当a>0时,对任意x1,x2∈R,都有f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)]

(2)如果对任意x∈[0,1]都有|f(x)|≤1,试求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
a
=(x-1,2),
b
=(4,y)
相互垂直,则点(2,3)到点(x,y)的距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=x2+|x-a|+1(a∈R),下列结论中正确的是(  )
A、当a≥0时,f(x)在(-∞,0)上单调递减
B、当a≤0时,f(x)在(-∞,0)上单调递减
C、当a≥
1
2
时,f(x)在(0,+∞)上单调递增
D、当a≤
1
2
时,f(x)在(0,+∞)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
2
(a x+a -x),(a>0且a≠1).
(1)讨论f(x)的奇偶性;
(2)若函数f(x)的图象经过点(2,
41
9
),求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线L与直线2x+5y-1=0平行,且与坐标轴围成的三角形面积为5,求直线L的方程.

查看答案和解析>>

同步练习册答案