精英家教网 > 高中数学 > 题目详情
19.$(\frac{2i}{1+i})•(2i-{i^{2016}})$=(  )
A.3-iB.-3-iC.3+iD.-3+i

分析 直接利用复数单位的幂运算以及复数的除法的运算法则化简求解即可.

解答 解:$\frac{2i}{1+i}$=$\frac{2i(1-i)}{(1+i)(1-i)}$=1+i.2i-i2016=2i-1.
$(\frac{2i}{1+i})•(2i-{i^{2016}})$=(1+i)(2i-1)=-3+i.
故选:D.

点评 本题考查复数的代数形式混合运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.某商店购进12件同品牌的衣服,其中10件是正品,其余2件是次品,从中无放回地任取2件,则取出的2件衣服中,至少有1件是次品的概率是(  )
A.$\frac{1}{3}$B.$\frac{5}{33}$C.$\frac{10}{33}$D.$\frac{7}{22}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}中,an-an-1=-2(n≥2,n∈N*),a1=5.
(1)求数列{an}的通项公式an及前n项和Sn
(2)求数列{|an|}的前10项和T10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{a+lnx}{x}$的最大值为1.
(1)求实数a的值;
(2)如果函数m(x),n(x)在公共定义域D上,满足m(x)<n(x),那么就称n(x)为m(x)的“线上函数”,若p(x)=$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$,q(x)=$\frac{f(x)}{e+1}$(x>1),求证:q(x)是p(x)的“线上函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若先将函数y=$\sqrt{3}$sin(x-$\frac{π}{6}$)+cos(x-$\frac{π}{6}$)图象上各点的纵坐标不变,横坐标缩短到原来的$\frac{1}{2}$倍,再将所得图象向左平移$\frac{π}{6}$个单位,所得函数图象的一条对称轴的方程是(  )
A.x=$\frac{π}{6}$B.x=$\frac{π}{3}$C.x=$\frac{π}{12}$D.x=$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直角梯形ABCP如图①所示,其中∠ABC=∠BCD=90°,AB=BC=AD=CD=PD;现沿AD进行翻折,使得PD⊥DC,得到如图②所示的多面体ABCDPE,其中PD∥2EC,PD=2EC,PF=BF.

(1)求证:PD⊥EF;
(2)若PD=4,求多面体ABCDPE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l经过圆${C_1}:{(x+3)^2}+{(y-3)^2}=13$与圆${C_2}:{x^2}+{y^2}=1$的两个公共点.
(1)求直线l的方程;
(2)若圆心为C的圆经过点A(3,-3)和点B(1,1),且圆心在直线l上,求圆心为C的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知矩阵$A=[{\begin{array}{l}x&y\\ 1&2\end{array}}],B=[{\begin{array}{l}{-1}&m\\{-2}&m\end{array}}]$,向量$α=[{\begin{array}{l}2\\ 3\end{array}}]$,x、y∈(0,+∞),若Aα=Bα,求xy的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{4}^{x},x≤0}\end{array}\right.$ 若函数g(x)=f(x)-k存在两个零点,则实数k的取值范围是(0,1].

查看答案和解析>>

同步练习册答案