精英家教网 > 高中数学 > 题目详情
7.设集合A={x|x=$\frac{n}{2}$,n∈Z},B={x|x=n+$\frac{1}{2}$,n∈Z},求证:B?A.

分析 n为整数,从而得到n=2k,或n=2k+1,k∈Z,带入$x=\frac{n}{2}$便可得出集合A,这样根据真子集的定义即可得出B?A.

解答 证明:n∈Z;
∴n=2k,或2k+1,k∈Z;
∴$A=\{x|x=k,或x=k+\frac{1}{2},k∈Z\}$;
又$B=\{x|x=n+\frac{1}{2},n∈Z\}$;
∴B?A.

点评 本题考查描述法表示集合的定义及表示形式,知道整数分成偶数和奇数,以及真子集的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.判断下列函数的奇偶性.
(1)f(x)=$\sqrt{9-{x}^{2}}$+$\sqrt{{x}^{2}-9}$;
(2)f(x)=(x+1)$\sqrt{\frac{1-x}{1+x}}$;
(3)f(x)=$\frac{\sqrt{4-{x}^{2}}}{|x+3|-3}$;
(4)f(x)=$\frac{lg(1-{x}^{2})}{|x-2|-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\frac{2x-3}{x}$图象的对称中心为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知I={1,2,3},A,B是集合I的两个非空子集,且A中所有数的和大于B中所有数的和,则集合A,B共有20对.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=$\frac{2}{\sqrt{a{x}^{2}-5x+b}}$的定义域是{x|-3<x<-2},则函数g(x)=$\sqrt{b{x}^{2}-5x+a}$的定义域是[$-\frac{1}{2},-\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(2x)的定义域是[$\frac{1}{2}$,1],求f(log2x)的定义域[${2}^{\sqrt{2}}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=$\sqrt{x+2}$+$\frac{1}{x+3}$+(x+2)0的定义域是{x|x>-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+5)+\frac{4}{3}(x+1),-4≤x≤-1}\\{2|x-1|-2,-1<x≤4}\end{array}\right.$,g(x)=-$\frac{1}{8}$x2-x+2(-4≤x≤4)给出下列四个命题:
①函数y=f[g(x)]有且只有三个零点;②函数y=g[f(x)]有且只有三个零点;
③函数y=f[f(x)]有且只有六个零点;④函数y=g[g(x)]有且只有一个零点.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.集合A={x|x2+ax+b=x}={a},求a、b的值.

查看答案和解析>>

同步练习册答案