精英家教网 > 高中数学 > 题目详情
12.直角坐标系的元旦和极坐标系的极点重合,x轴正半轴与极轴重合单位长度相同,在直角坐标系下,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosφ}\\{y=2sinφ}\end{array}\right.$(φ为参数).
(1)在极坐标系下,曲线C与射线$θ=\frac{π}{6}$和射线$θ=\frac{2π}{3}$分别交于A,B两点,求△ABC的面积;
(2)在直角坐标系下,直线l的参数方程为$\left\{\begin{array}{l}{x=-2+t}\\{y=t}\end{array}\right.$(t为参数),求曲线C与直线l的交点坐标.

分析 (1)曲线C在直角坐标系下的普通方程为:x2+y2=4,通过射线$θ=\frac{π}{6}$和射线$θ=\frac{2π}{3}$,及面积计算公式可得结果;
(2)将l的参数方程代入曲线C的普通方程,得t=0或2,再代入l的参数方程,即可.

解答 解:(1)曲线C在直角坐标系下的普通方程为:x2+y2=4,
所以|OA|=|OB|=2,
由射线$θ=\frac{π}{6}$和射线$θ=\frac{2π}{3}$,得$∠AOB=\frac{π}{2}$,
故△AOB的面积S=$\frac{1}{2}|OA||OB|=2$;
(2)将l的参数方程代入曲线C的普通方程,得t2-4t+4+t2=4,
所以t2-2t=0,解得t=0或2,
代入t的参数方程,得$\left\{\begin{array}{l}{x=-2}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$,
所以曲线C与直线l的交点坐标为(-2,0)或(0,2).

点评 本题主要考查坐标系与参数方程的相关知识,具体涉及到极坐标方程、参数方程与普通方程的互化等内容,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.与圆(x-2)2+y2=1外切,且与y轴相切的动圆圆心P的轨迹方程为(  )
A.y2=6x-3B.y2=2x-3C.x2=6y-3D.x2-4x-2y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和Sn满足Sn=2an-2n+1+2.
(1)求a1,a2的值;
(2)求证:{$\frac{{a}_{n}}{{2}^{n}}$}是等差数列,并求an
(3)令$\frac{1}{{b}_{n}}$=($\frac{{a}_{n}}{n}$)2,求证:b1+b2+…+bn<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一个焦点F1作一条渐近线的垂线,垂足为A,与另一条渐近线交于点B,若A恰好是F1B的中点,则双曲线的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某产品的广告费用x(单位:万元)的统计数据如下表:
广告费用x(单位:万元)2345
利润y(单位:万元)264954
根据上表可得线性回归方程$\widehat{y}$=9.4x+9.1,表中有一数据模糊不清,请推算该数据的值为39.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过P作圆的切线PA,PB,切点为A,B使得∠BPA=$\frac{π}{3}$,则椭圆C1的离心率的取值范围是(  )
A.$[\frac{{\sqrt{3}}}{2},1)$B.$[\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2}]$C.$[\frac{{\sqrt{2}}}{2},1)$D.$[\frac{1}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an},a1=1,an=n+1(n≥2),Tn=$\frac{1}{{a}_{1}{a}_{3}}$+$\frac{1}{{a}_{2}{a}_{4}}$+…+$\frac{1}{{a}_{n}{a}_{n+2}}$,求证:Tn<$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数)上的点到其焦点的距离的最小值3$-\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若方程(2m-1)x+(2m2+m-1)y+m=0表示一条直线,则m的取值范围是$(-∞,\frac{1}{2})$∪$(\frac{1}{2},+∞)$.

查看答案和解析>>

同步练习册答案