【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支2 000元.
(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;
(2)企业乙只依靠该店,最早可望在几年后脱贫?
【答案】(1) 19.5元,450元;(2)20年.
【解析】试题分析:(1)根据利润等于销售额乘以单价减去成本得:L=,再分段根据二次函数对称轴与定义区间位置关系求最大值,最后取两个最大值中最大值(2) 由脱贫的含义:无债务,列不等式:12n×450-50 000-58 000≥0,解得n≥20.
试题解析:设该店月利润余额为L元,
则由题设得L=Q(P-14)×100-3 600-2 000,(*)
由销量图易得Q=
代入*式得L=
(1)当14≤P≤20时,Lmax=450元,此时P=19.5元;
当20<P≤26时,Lmax=元,此时P=元.
故当P=19.5元时,月利润余额最大,为450元.
(2)设可在n年后脱贫,
依题意有12n×450-50 000-58 000≥0,解得n≥20.
即最早可望在20年后脱贫.
科目:高中数学 来源: 题型:
【题目】下列命题中
(1)在等差数列中, 是的充要条件;
(2)已知等比数列为递增数列,且公比为,若,则当且仅当;
(3)若数列为递增数列,则的取值范围是;
(4)已知数列满足,则数列的通项公式为
(5)对任意的恒成立.
其中正确命题是_________(只需写出序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,多面体中,四边形是菱形, , 相交于, ,点在平面上的射影恰好是线段的中点.
(Ⅰ)求证: 平面;
(Ⅱ)若直线与平面所成的角为,求平面与平面所成角(锐角)的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左、右焦点分别为, ,直线交椭圆于, 两点, 的周长为16, 的周长为12.
(1)求椭圆的标准方程与离心率;
(2)若直线与椭圆交于两点,且是线段的中点,求直线的一般方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin x,g(x)=mx- (m为实数).
(1)求曲线y=f(x)在点处的切线方程;
(2)求函数g(x)的单调递减区间;
(3)若m=1,证明:当x>0时,f(x)<g(x)+.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ-2cos θ-6sin θ+=0,直线l的参数方程为 (t为参数).
(1)求曲线C的普通方程;
(2)若直线l与曲线C交于A,B两点,点P的坐标为(3,3),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左、右焦点分别为, ,直线交椭圆于, 两点, 的周长为16, 的周长为12.
(1)求椭圆的标准方程与离心率;
(2)若直线与椭圆交于两点,且是线段的中点,求直线的一般方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人为研究中学生的性别与每周课外阅读量这两个变量的关系,随机抽查了100名中学生,得到频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
(Ⅰ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生周课外阅读时间的平均数.
(Ⅱ)在样本数据中,有20位女生的每周课外阅读时间超过4小时,15位男生的每周课外阅读时间没有超过4小时.请画出每周课外阅读时间与性别列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“该校学生的每周课外阅读时间与性别有关”.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
附:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com