【题目】下列命题中
(1)在等差数列
中,
是
的充要条件;
(2)已知等比数列
为递增数列,且公比为
,若
,则当且仅当
;
(3)若数列
为递增数列,则
的取值范围是
;
(4)已知数列
满足
,则数列
的通项公式为![]()
(5)对任意的
恒成立.
其中正确命题是_________(只需写出序号).
科目:高中数学 来源: 题型:
【题目】已知
是抛物线
的焦点,
关于
轴的对称点为
,曲线
上任意一点
满足;直线
和直线
的斜率之积为
.
(1)求曲线
的方程;
(2)过
且斜率为正数的直线
与抛物线交于
两点,其中点
在
轴上方,与曲线
交于点
,若
的面积为
的面积为
,当时
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C1的参数方程为
(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为
.
(1)将圆C1的参数方程化为普通方程,将圆C2的极坐标方程化为直角坐标方程;
(2)圆C1、C2是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=Asin(x+φ)(A>0,
的部分图象如图所示.
(I)设x∈(0,
)且f(α)=
,求sin 2a的值;
(II)若x∈[
]且g(x)=2λf(x)+cos(4x﹣
)的最大值为
,求实数λ的值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-5 不等式选讲
已知函数f(x)=|x-1|-2|x+1|的最大值为m.
(1)求m;
(2)若a,b,c∈(0,+∞),a2+2b2+c2=2m,求ab+bc的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016·辽宁五校联考)某车间加工零件的数量x与加工时间y的统计数据如表:
零件数x(个) | 10 | 20 | 30 |
加工时间y(分钟) | 21 | 30 | 39 |
现已求得上表数据的线性回归方程
=
+
中的
值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( )
A. 84分钟 B. 94分钟
C. 102分钟 D. 112分钟
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支2 000元.
![]()
(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;
(2)企业乙只依靠该店,最早可望在几年后脱贫?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com