精英家教网 > 高中数学 > 题目详情

【题目】下列命题中

(1)在等差数列中, 的充要条件;

(2)已知等比数列为递增数列,且公比为,若,则当且仅当;

(3)若数列为递增数列,则的取值范围是;

(4)已知数列满足,则数列的通项公式为

(5)对任意的恒成立.

其中正确命题是_________(只需写出序号).

【答案】(2)

【解析】(1)m=n=s=t=1,必要性不成立,(1)错误;(2)在等比数列为递增数列时, ,则当且仅当,(2)正确;(3) 数列为递增数列,由二次函数的性质可知, ,,(3)错误;(4)n=1,,n>1, ,两式相减可得,,不满足该式,故数列的通项公式不是,因此(4)错误;(5)n=1,不等式可化为,不成立,(5)错误.因此正确命题是(2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是抛物线的焦点,关于轴的对称点为,曲线上任意一点满足;直线和直线的斜率之积为.

(1)求曲线的方程;

(2)过且斜率为正数的直线与抛物线交于两点,其中点轴上方,与曲线交于点,若的面积为的面积为,当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图如果输入的t0.01则输出的n(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1的参数方程为 (φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为

(1)将圆C1的参数方程化为普通方程,将圆C2的极坐标方程化为直角坐标方程;

(2)圆C1、C2是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数fx=Asinx+φ)(A0 的部分图象如图所示.

I)设x0 )且fα= ,求sin 2a的值;

II)若x[]且gx=2λfx+cos4x)的最大值为,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱侧棱与底面垂直,分别是的中点.

)求证:平面

)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5 不等式选讲

已知函数f(x)=|x-1|-2|x+1|的最大值为m.

(1)求m

(2)若abc∈(0,+∞),a2+2b2c2=2m,求abbc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·辽宁五校联考)某车间加工零件的数量x与加工时间y的统计数据如表:

零件数x(个)

10

20

30

加工时间y(分钟)

21

30

39

现已求得上表数据的线性回归方程中的值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为(  )

A. 84分钟 B. 94分钟

C. 102分钟 D. 112分钟

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:这种消费品的进价为每件14元;该店月销量Q(百件)与销售价格P(元)的关系如图所示;每月需各种开支2 000.

1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;

2)企业乙只依靠该店,最早可望在几年后脱贫?

查看答案和解析>>

同步练习册答案