精英家教网 > 高中数学 > 题目详情
13.已知$x∈(-\frac{π}{2},0),tanx=-2$,则sin(x+π)=(  )
A.$\frac{{\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$C.$-\frac{{2\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

分析 根据x的取值范围,tanx的值易得sinx,所以结合诱导公式求得sin(x+π)的值即可.

解答 解:因为$x∈(-\frac{π}{2},0),tanx=-2$,
所以sinx=$-\sqrt{\frac{ta{n}^{2}x}{ta{n}^{2}x+1}}$=-$\frac{2\sqrt{5}}{5}$,
∴sin(x+π)=-sinx=$\frac{2\sqrt{5}}{5}$.
故选:D.

点评 本题主要考查同角三角函数关系式和诱导公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知数列{an}满足an+1=$\frac{2{a}_{n}+3}{{a}_{n}+4}$(n∈N*),设bn=$\frac{{a}_{n}-λ}{{a}_{n}-μ}$(n∈N*,λ,μ为均不等于2的且互不相等的常数),若数列{bn}为等比数列,则λ•μ的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,既是偶函数又在区间(2,+∞)上单调递减的是(  )
A.$y=\frac{1}{x}$B.y=lg|x|C.y=-x2+1D.y=e-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在直三棱柱ABC-A1B1C1中,底面△ABC是等腰直角三角形,且斜边$AB=\sqrt{2}$,侧棱AA1=2,点D为AB的中点,点E在线段AA1上,AE=λAA1(λ为实数).
(1)求证:不论λ取何值时,恒有CD⊥B1E;
(2)当$λ=\frac{1}{3}$时,记四面体C1-BEC的体积为V1,四面体D-BEC的体积为V2,求V1:V2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数$\frac{2}{1+i}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z满足$\frac{z-1}{z+1}=i$,则复数z在复平面内对应点在(  )
A.第一、二象限B.第三、四象限C.实轴D.虚轴

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图:已知△ABC,AC=15,M在AB边上,且CM=3$\sqrt{13}$,cos∠ACM=$\frac{{3\sqrt{13}}}{13}$,sinα=$\frac{{2\sqrt{5}}}{5}$,(α为锐角),则△ABC的面积为225.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=x+cosx,有以下命题:
①f(x)的定义域是(2kπ,2kπ+2π);
②f(x)的值域是R;
③f(x)是奇函数;
④f(x)的图象与直线y=x的交点中有一个点的横坐标为$\frac{π}{2}$,
其中推断正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设h=min{a,$\frac{2b}{{a}^{2}+{b}^{2}}$},其中a,b 均为正实数,证明:h≤1.

查看答案和解析>>

同步练习册答案