精英家教网 > 高中数学 > 题目详情
6.如图是函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的一段图象,则函数的解析式为y=sin(2x+$\frac{π}{3}$).

分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.

解答 解:结合函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的一段图象,可得A=1,
$\frac{T}{4}$=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{π}{12}$-(-$\frac{π}{6}$),∴ω=2.
再根据五点法作图可得2•$\frac{π}{12}$+φ=$\frac{π}{2}$,求得φ=$\frac{π}{3}$,∴函数的解析式为 函数y=sin(2x+$\frac{π}{3}$),
故答案为:y=sin(2x+$\frac{π}{3}$).

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.求函数f(x)=cos2x+2asinx-1,x∈[0,$\frac{π}{2}$]的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.对于集合A,B,如果映射f:A→B满足f(a)+f(b)=f(c).则把此映射称为“引射”,若A={a,b,c},B={1,0,-1},则f:A→B构成的所有映射中“引导映射”的概率$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.程序框图的功能是:给出以下十个数:5,9,80,43,95,73,28,17,60,36,把大于60的数找出来,则框图中的①②应分别填入的是(  )
A.x>60?,i=i-1B.x<60?,i=i+1C.x>60?,i=i+1D.x<60?,i=i-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)的定义域为D,若f(x)满足下面两个条件,则称f(x)为闭函数:①f(x)在D上是单调函数;②存在[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b].现已知f(x)=$\sqrt{2x+1}$+k为闭函数,则k的取值范围是(  )
A.(-1,-$\frac{1}{2}$]B.(-∞,1)C.[$\frac{1}{2}$,1)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$y=cos(2x+\frac{π}{3})$的定义域是[a,b],值域为$[-\frac{1}{2},1]$,则b-a的最大值与最小值之和为(  )
A.B.πC.$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow a=(1,2),\;\overrightarrow b=(1,0),\;\overrightarrow c=(3,4)$,若$(\overrightarrow b+λ\overrightarrow a)⊥\overrightarrow c$,则实数λ的值为(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$-\frac{11}{3}$D.$-\frac{3}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an},a1=2,an=2an-1+$\frac{{2}^{n}}{n(n+1)}$,则an=$\frac{3n+1}{2(n+1)}•{2}^{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知下列框图,若a=5,则输出b=26.

查看答案和解析>>

同步练习册答案