精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图,已知正方形ABCD和矩形ACEF所在平面互相垂直,
AB=,AF=1,M是线段EF的中点。
(Ⅰ)求证:AM∥平面BDE;
(Ⅱ) 求二面角A-DF-B的大小.
解: (Ⅰ)记AC与BD的交点为O,连接OE,          
∵O、M分别是AC、EF的中点,ACEF是矩形,
∴四边形AOEM是平行四边形,                    
∴AM∥OE.                                      
平面BDE, 平面BDE,           
∴AM∥平面BDE.                           
(Ⅱ)在平面AFD中过A作AS⊥DF于S,连结BS,
∵AB⊥AF, AB⊥AD,
∴AB⊥平面ADF,                             
∴AS是BS在平面ADF上的射影,
由三垂线定理得BS⊥DF.
∴∠BSA是二面角A—DF—B的平面角。           
在RtΔASB中,
                   
∴二面角A—DF—B的大小为60º.               
方法二:
(Ⅰ)建立如图所示的空间直角坐标系。

,连接NE,
则点N、E的坐标分别是(、(0,0,1),

又点A、M的坐标分别是
)、(

∴NE∥AM.
又∵平面BDE, 平面BDE,
∴AM∥平面BDF.
(Ⅱ)∵AF⊥AB,AB⊥AD,AF
∴AB⊥平面ADF.

即所求二面角A—DF—B的大小是60º.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中点,F是AD的中点.

⑴求异面直线PD与AE所成角的大小;
⑵求证:EF⊥平面PBC ;
⑶求二面角F—PC—B的大小..

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 如图,三棱锥ABPC中,APPCACBCMAB中点,DPB中点,且△PMB为正三角形.
(Ⅰ)求证:DM//平面APC
(Ⅱ)求 证:平面ABC⊥平面APC
(Ⅲ)若BC=4,AB=20,求三棱锥DBCM的体积.


 
 

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正四棱柱中,,点上且
(1)证明:平面;(2)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,底面,点分别在棱上,且      (Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成角的正弦值;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,平面⊥平面=,DA,BC,且DA⊥于A,BC⊥于B,AD=4,BC=8,AB=6,在平面内不在上的动点P,记PD与平面所成角为,PC与平面所成角为,若,则△PAB的面积的最大值是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 (本题满分12分)(本题满分12分)如图:在四棱台ABCD-A1B1C1D1中,DD1垂直底面,且DD1=2,底面四边形ABCD与A1B1C1D1分别为边长2和1的正方形.

(1)求直线DB1与BC1夹角的余弦值;
(2)求二面角A-BB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知某几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是_____ ___ cm3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

地球北纬450圈上有两点,点在东经1300处,点在西经1400处,
若地球半径为,则两点的球面距离为        

查看答案和解析>>

同步练习册答案