精英家教网 > 高中数学 > 题目详情
以椭圆上一点和两个焦点为顶点的三角形的最大面积为1,则长轴长的最小值为         
本试题主要是考查了运用三角形的面积公式得到bc的值,然后结合a2=b2+c2,求解2a的最值。
由题意可知,因为椭圆上一点和两个焦点为顶点的三角形的最大面积为1,即可知bc=1,因为a2=b2+c2=b2+,那么运用均值不等式,所以a故长轴长的最小值为,答案为
解决该试题的关键是利用均值不等式得到最值。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点坐标是(  )
A.(0,)、(0,)B. (0,-1)、(0,1)
C.(-1,0)、(1,0)D.(,0)、(,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左右焦点分别为,过焦点的直线交该椭圆于两点,若的内切圆面积为两点的坐标分别为,则的值为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线被椭圆所截得的弦的中点坐标是(   )
A.(, B.(, ) C.(,D.(, )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆E:,对于任意实数下列直线被椭圆E截得的弦长与直线
被椭圆E截得的弦长不可能相等的是( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,椭圆
(1)若一直线与椭圆交于两不同点,且线段恰以点为中点,求直线的方程;
(2)若过点的直线(非轴)与椭圆相交于两个不同点试问在轴上是否存在定点,使恒为定值?若存在,求出点的坐标及实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分 )已知椭圆经过点,一个焦点是
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆轴的两个交点为,点在直线上,直线分别与椭圆交于两点.试问:当点在直线上运动时,直线是否恒经过定点?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的长轴长是短轴长的2倍且经过点A(2,0),求椭圆的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

查看答案和解析>>

同步练习册答案