精英家教网 > 高中数学 > 题目详情
19.若C(-2,-2),$\overrightarrow{CA}$•$\overrightarrow{CB}$=0,且直线CA交x轴于A,直线CB交y轴于B,则线段AB中点M的轨迹方程是(  )
A.x+y+2=0B.x-y+2=0C.x+y-2=0D.x-y-2=0

分析 由题意可知:点M既是Rt△ABC的斜边AB的中点,又是Rt△OAB的斜边AB的中点,可得|OM|=|CM|,利用两点间的距离公式即可得出.

解答 解:由题意可知:点M既是Rt△ABC的斜边AB的中点,又是Rt△OAB的斜边AB的中点.
∴|OM|=|CM|,
设M(x,y),则$\sqrt{{x}^{2}+{y}^{2}}$=$\sqrt{(x+2)^{2}+(y+2)^{2}}$,
化简为x+y+2=0.
故选:A.

点评 本题考查了直角三角形的斜边的中线的性质和两点间的距离公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:x2=2py(p>0)的焦点为F(0,1).
(Ⅰ)求抛物线C的方程;
(Ⅱ)直线AB与抛物线C交于点A,B(A在第一象限),与y轴交于点C,$\overrightarrow{AC}=2\overrightarrow{CB}$,若△OAB是锐角三角形,求直线AB斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源是中国古代数学家祖冲之的圆周率.为庆祝该节日,某校举办的数学嘉年华活动中,设计了如下有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得5个、10个、20个学豆的奖励.游戏还规定,当选手闯过一关后,可以选择带走相应的学豆,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部学豆归零,游戏结束.设选手甲能闯过第一关、第二关、第三关的概率分别为$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,选手选择继续闯关的概率均为$\frac{1}{2}$,且各关之间闯关成功与否互不影响.
(Ⅰ)求选手甲第一关闯关成功且所得学豆为零的概率;
(Ⅱ)设该选手所得学豆总数为X,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知x,y>0,求证:$\frac{{{x^2}+{y^2}}}{x+y}$≥$\sqrt{xy}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.2015年中国汽车销售遇到瓶颈,各大品牌汽车不断加大优惠力度.某4S店在一次促销活动中,让每位参与者从盒子中任取一个由0~9中任意三个数字组成的“三位递减数”(即个数数字小于十位数字,十位数字小于百位数字).若“三位递减数”中的三个数字之和既能被2整除又能被5整除,则可以享受5万元的优惠;若“三位递减数”中的三个数字之和仅能被2整除,则可以享受3万元的优惠;其他结果享受1万元的优惠.
(1)试写出所有个位数字为4的“三位递减数”;
(2)若小明参加了这次汽车促销活动,求他得到的优惠金额X的分布列及数字期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知x,y满足x2+y2=1,求证:|ax+by|≤$\sqrt{{a}^{2}+{b}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设a,b,c,d均为正数,且a+b=c+d,证明:
(1)若ab>cd,则$\sqrt{a}$+$\sqrt{b}$>$\sqrt{c}$+$\sqrt{d}$;
(2)若$\sqrt{a}$+$\sqrt{b}$>$\sqrt{c}$+$\sqrt{d}$,则|a-b|<|c-d|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某同学在独立完成课本上的例题:“求证:$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$”后,又进行了探究,发现下面的不等式均成立.
$\sqrt{0}$+$\sqrt{10}$<2$\sqrt{5}$
$\sqrt{1.3}$+$\sqrt{8.7}$<2$\sqrt{5}$
$\sqrt{2}$+$\sqrt{8}$<2$\sqrt{5}$
$\sqrt{4.6}$+$\sqrt{5.4}$<2$\sqrt{5}$,
$\sqrt{5}$+$\sqrt{5}$≤2$\sqrt{5}$.
(1)请根据上述不等式归纳出一个一般性的不等式;(用字母表示)
(2)请用合适的方法证明你写出的不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.2016年,我国诸多省市将使用新课标全国卷作为高考用卷,某市一高中(以下简称A校)为了调查该校师生对这一举措的看法,随机抽取了30名教师,70名学生进行调查,得到以下的2×2列联表:
 支持 反对 合计
 教师 1614  30
 学生 4426  70
 合计 6040 100
(1)根据以上数据,能否有90%的把握认为A校师生“支持使用新课标全国卷”与“师生身份”有关?
(2)现将这100名师生按教师、学生身份进行分层抽样,从中抽取10人,试求恰好抽取到持“反对使用新课标全国卷”态度的教师2人的概率.

查看答案和解析>>

同步练习册答案