精英家教网 > 高中数学 > 题目详情
7.已知x,y>0,求证:$\frac{{{x^2}+{y^2}}}{x+y}$≥$\sqrt{xy}$.

分析 由(x-y)2≥0,可得$\frac{{{x^2}+{y^2}}}{x+y}≥\frac{x+y}{2}$,再由均值不等式,结合不等式的传递性即可得证.

解答 证明:因为x,y>0,且(x-y)2≥0,
(当且仅当x=y时“=”成立)
即有2(x2+y2)-(x+y)2≥0,
所以$\frac{{{x^2}+{y^2}}}{x+y}≥\frac{x+y}{2}$,①
又$\frac{x+y}{2}≥\sqrt{xy}$,(当且仅当x=y时“=”成立)②
由①②得$\frac{{{x^2}+{y^2}}}{x+y}≥\sqrt{xy}$(当且仅当x=y时“=”成立).

点评 本题考查不等式的证明,注意运用均值不等式和不等式的传递性,考查推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),在极坐标系中,圆C的方程为ρ=2$\sqrt{5}$sinθ.
(1)求圆C的圆心到直线l的距离;
(2)设圆C与直线l交于点A、B,若点P的坐标为(3,$\sqrt{5}$),求|$\frac{1}{|PA|}$-$\frac{1}{|PB|}$|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知正数x,y,z满足x+y+z=xyz,且不等式$\frac{1}{x+y}$+$\frac{1}{y+z}$+$\frac{1}{z+x}$≤λ恒成立,求λ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设a,b,c为正数,且a2+b2+c2=1,求证:$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$-$\frac{2({a}^{3}+{b}^{3}+{c}^{3})}{abc}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xoy中,动点M到点F(1,0)的距离与它到直线x=2的距离之比为$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)设直线y=kx+m(m≠0)与曲线E交于A,B两点,与x轴、y轴分别交于C,D两点(且C,D在A,B之间或同时在A,B之外).问:是否存在定值k,对于满足条件的任意实数m,都有△OAC的面积与△OBD的面积相等,若存在,求k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.经过抛物线y=ax2(a>0)的焦点F,且倾斜角为$\frac{π}{6}$的直线与抛物线在第一象限的交点为A,过A作x轴的垂线,垂足为B,若△ABF的面积为$\frac{3\sqrt{3}}{4}$,则实数a的值为(  )
A.4B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若C(-2,-2),$\overrightarrow{CA}$•$\overrightarrow{CB}$=0,且直线CA交x轴于A,直线CB交y轴于B,则线段AB中点M的轨迹方程是(  )
A.x+y+2=0B.x-y+2=0C.x+y-2=0D.x-y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆T:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,过左焦点F的直线与椭圆交于A,B两点,若线段AB的中点为M(-$\frac{2}{3}$,$\frac{1}{3}$)
(1)求椭圆的方程;
(2)过右焦点的直线l与圆x2+y2=2相交于C、D,与椭圆T相交于E、G,且|CD|=$\sqrt{5}$,求|EG|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某城市要建宜居的新城,准备引进优秀企业进行城市建设.这个城市的甲区、乙区分别对6个企业进行评估,综合得分情况如茎叶图所示.
(Ⅰ)根据茎叶图,分别求甲、乙两区引进企业得分的平均值;
(Ⅱ)规定85分以上(含85分)为优秀企业.若从甲、乙两个区准备引进的优秀企业中各随机选取1个,求这两个企业得分的差的绝对值不超过5分的概率.

查看答案和解析>>

同步练习册答案