精英家教网 > 高中数学 > 题目详情
11.设a,b,c,d均为正数,且a+b=c+d,证明:
(1)若ab>cd,则$\sqrt{a}$+$\sqrt{b}$>$\sqrt{c}$+$\sqrt{d}$;
(2)若$\sqrt{a}$+$\sqrt{b}$>$\sqrt{c}$+$\sqrt{d}$,则|a-b|<|c-d|.

分析 (1)运用两边平方,结合条件和不等式的性质,即可得证;
(2)由$\sqrt{a}$+$\sqrt{b}$>$\sqrt{c}$+$\sqrt{d}$,两边平方,由条件结合不等式的性质,可得|a-b|<|c-d|,即可得证.

解答 证明:(1)由($\sqrt{a}$+$\sqrt{b}$)2=a+b+2$\sqrt{ab}$,
($\sqrt{c}$+$\sqrt{d}$)2=c+d+2$\sqrt{cd}$,
由a+b=c+d,ab>cd,
可得($\sqrt{a}$+$\sqrt{b}$)2>($\sqrt{c}$+$\sqrt{d}$)2
即为$\sqrt{a}$+$\sqrt{b}$>$\sqrt{c}$+$\sqrt{d}$;
(2)若$\sqrt{a}$+$\sqrt{b}$>$\sqrt{c}$+$\sqrt{d}$,
则($\sqrt{a}$+$\sqrt{b}$)2>($\sqrt{c}$+$\sqrt{d}$)2
即有a+b+2$\sqrt{ab}$>c+d+2$\sqrt{cd}$,
由a+b=c+d,即有ab>cd,
(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2
可得|a-b|<|c-d|.

点评 本题考查不等式的证明,注意运用不等式的性质,考查化简整理的运算能力和推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图所示,平面ABC⊥平面BCDE,BC∥DE,$BC=\frac{1}{2}DE=2$,BE=CD=2,AB⊥BC,AB=3.M,N分别为DE,AD的中点.
(1)证明:平面MNC∥平面ABE;
(2)EC⊥CD,点P为棱AD的三等分点(近A),试求直线MP与平面ABE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xoy中,动点M到点F(1,0)的距离与它到直线x=2的距离之比为$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)设直线y=kx+m(m≠0)与曲线E交于A,B两点,与x轴、y轴分别交于C,D两点(且C,D在A,B之间或同时在A,B之外).问:是否存在定值k,对于满足条件的任意实数m,都有△OAC的面积与△OBD的面积相等,若存在,求k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若C(-2,-2),$\overrightarrow{CA}$•$\overrightarrow{CB}$=0,且直线CA交x轴于A,直线CB交y轴于B,则线段AB中点M的轨迹方程是(  )
A.x+y+2=0B.x-y+2=0C.x+y-2=0D.x-y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设正数数列{an}的前n项和为Sn,且Sn=$\frac{1}{2}$(an+$\frac{1}{a_n}$).
(1)试求a1、a2、a3
(2)猜想通项an,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆T:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,过左焦点F的直线与椭圆交于A,B两点,若线段AB的中点为M(-$\frac{2}{3}$,$\frac{1}{3}$)
(1)求椭圆的方程;
(2)过右焦点的直线l与圆x2+y2=2相交于C、D,与椭圆T相交于E、G,且|CD|=$\sqrt{5}$,求|EG|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=|x-$\frac{4}{a}$|+|x+a|(a>0).
(1)证明:f(x)≥4;
(2)若f(2)<5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|2x-1|.
(1)若不等式f(x+$\frac{1}{2}$)≤2m+1(m>0)的解集为[-2,2],求实数m的值;
(2)对任意x,y∈R,求证:f(x)≤2y+$\frac{4}{{2}^{y}}$+|2x+3|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{2\sqrt{5}}}{5}$,直线mx+y+1=1恒过椭圆的一个顶点.
(I)求椭圆的标准方程;
(Ⅱ)设O为坐标原点,P为椭圆的右焦点,过F的直线l(l不与坐标轴垂直)交椭圆于A,B两点,C为AB的中点,D为A关于x轴的对称点.
(i)求证:直线OC与过点F且与l垂直的直线的交点在直线x=$\frac{5}{2}$上;
(ii)在x轴上是否存在定点T,使B、D、T三点共线?若存在,求出T点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案