精英家教网 > 高中数学 > 题目详情
12.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=log2x-1,则f(-$\frac{\sqrt{2}}{4}$)=$\frac{5}{2}$.

分析 由f(x)为奇函数先得到$f(-\frac{\sqrt{2}}{4})=-f(\frac{\sqrt{2}}{4})$,而将x=$\frac{\sqrt{2}}{4}$代入f(x)=log2x-1即可求出$f(\frac{\sqrt{2}}{4})$,从而求出$f(-\frac{\sqrt{2}}{4})$的值.

解答 解:根据条件:
$f(-\frac{\sqrt{2}}{4})=-f(\frac{\sqrt{2}}{4})$
=$-(lo{g}_{2}{2}^{-\frac{3}{2}}-1)$
=$\frac{5}{2}$.
故答案为:$\frac{5}{2}$.

点评 考查奇函数的定义,以及已知函数求值的方法,指数式的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知圆P:x2+y2=5,则经过点M(-1,2)且与圆P相切的直线方程是x-2y+5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在约束条件$\left\{\begin{array}{l}x+2y≤4\\ x-y≤1\\ x+2≥0\end{array}\right.$下,
(1)求函数z=3x-y的最小值;
(2)若3x-y-m≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=ax+$\frac{1}{2}$xln2x.
(1)若a=0,求f(x)的单调增区间;
(2)若x∈[1,e]时,有f(x)≤ax2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为F(1,0),点(-1,$\frac{\sqrt{2}}{2}$)在椭圆C上,点T满足$\overrightarrow{OT}$=$\frac{{a}^{2}}{\sqrt{{a}^{2}-{b}^{2}}}$•$\overrightarrow{OF}$(其中O为坐标原点),过点F作一斜率为k(k>0)的直线交椭圆于P、Q两点(其中P点在x轴上方,Q点在x轴下方).
(1)求椭圆C的方程;
(2)若k=1,求△PQT的面积;
(3)设点P′为点P关于x轴的对称点,判断$\overrightarrow{P′Q}$与$\overrightarrow{QT}$的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=-sin2x+2asinx+5
(1)当a=$\frac{1}{2}$时,求函数f(x)的值域;
(2)当f(x)=0有实数解时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设F1,F2分别是$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点.若在椭圆上存在点P满足|PF1|=|F1F2|,且原点到直线PF2的距离等于椭圆的短半轴长,则该椭圆的离心率为(  )
A.$\frac{5}{7}$B.$\frac{7}{5}$C.$\frac{1}{7}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.当2<k<3时,曲线$\frac{x^2}{2-k}+\frac{y^2}{3-k}$=1与曲线$\frac{x^2}{3}+\frac{y^2}{2}$=1有相同的(  )
A.焦点B.准线C.焦距D.离心率

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,周长为36cm,且sinA:sinB:sinC=5:6:7,下列结论:
①a:b:c=5:6:7
②a:b:c=$\sqrt{5}$:$\sqrt{6}$:$\sqrt{7}$
③a=10cm,b=12cm,c=14cm
④A:B:C=5:6:7
其中成立的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案