精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x-lnx.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)如果函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当1<x<2时,f(x)<g(x);
(Ⅲ)如果x1,x2∈(0,2),x1≠x2,且f(x1)=f(x2),证明:x1+x2>2.
分析:(Ⅰ)求导数f′(x),在定义域内解不等式f′(x)<0,f′(x)>0即可;
(Ⅱ)由对称关系求出g(x),构造函数F(x)=f(x)-g(x),用导数证明当1<x<2时,F(x)<0即可;
(Ⅲ)分(x1-1)(x2-1)=0,(x1-1)(x2-1)>0,(x1-1)(x2-1)<0三种情况讨论,借助(Ⅰ)(Ⅱ)问结论可证明.
解答:解:(Ⅰ)f(x)的定义域为(0,+∞).
f′(x)=1-
1
x
=
x-1
x

则f′(x)<0时,0<x<1,当f′(x)>0时,x>1,
所以f(x)的减区间是(0,1),增区间是(1,+∞).
(Ⅱ)由题意知,g(x)=f(2-x)=2-x-ln(2-x),
令F(x)=f(x)-g(x)═2x-2-lnx+ln(2-x),
F′(x)=2-
1
x
-
1
2-x
=
2x2-4x+2
x(x-2)
=
2(x-1)2
x(x-2)

当1<x<2时,F′(x)<0,即F(x)是减函数.
F(x)<F(1)=0,
所以f(x)<g(x).
(Ⅲ)证明:(1)若(x1-1)(x2-1)=0,
由(Ⅰ)及f(x1)=f(x2),则x1=x2=1,与x1≠x2矛盾.
(2)若(x1-1)(x2-1)>0,由(Ⅰ)及f(x1)=f(x2),得x1=x2,与x1≠x2矛盾.
根据(1)(2)得(x1-1)(x2-1)<0,不妨设x11.
当1<x2<2时,由(Ⅱ)可知f(x2)<g(x2),而g(x2)=f(2-x2),
所以f(x2)<f(2-x2),从而f(x1)<f(2-x2),因为x2>1,所以2-x2<1,
又由(Ⅰ)可知函数f(x)在区间(0,1)内为减函数,所以x1>2-x2,即x1+x2>2.
点评:本题考查应用导数研究函数的单调性、证明不等式问题,考查分析问题解决问题的能力,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案