精英家教网 > 高中数学 > 题目详情
4.已知a、b是方程log3x3+log27(3x)=-$\frac{4}{3}$的两个根,则a+b=$\frac{10}{81}$.

分析 利用对数的换底公式和对数的运算法则可把方程log3x3+log27(3x)=-$\frac{4}{3}$化为:$\frac{1}{1+{log}_{3}x}$+$\frac{1+{log}_{3}x}{3}$=-$\frac{4}{3}$.进而转化为一元二次方程类型方程,解出即可.

解答 解:利用对数的换底公式把方程log3x3+log27(3x)=-$\frac{4}{3}$化为:$\frac{1}{1+{log}_{3}x}$+$\frac{1+{log}_{3}x}{3}$=-$\frac{4}{3}$.
化为(1+log3x)2+4(1+log3x)+3=0,
解得1+log3x=-1或-3,
∴log3x=-2或-4,
解得x=$\frac{1}{9}$或 $\frac{1}{81}$.
∴a+b=$\frac{1}{9}+\frac{1}{81}$=$\frac{10}{81}$.
故答案为:$\frac{10}{81}$.

点评 本题考查了对数的换底公式和对数的运算法则、一元二次方程的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知实数x,y,a满足x+y=a.
(1)若$\frac{x}{{3}^{3}-{5}^{3}}$+$\frac{y}{{3}^{3}-{6}^{3}}$=1,$\frac{x}{{4}^{3}-{5}^{3}}$+$\frac{y}{{4}^{3}-{6}^{3}}$=1,求a的值;
(2)若x3+y3=x5+y5=a,求a的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下列联表(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):
常喝不常喝合计
肥胖2
不肥胖18
合计30
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为$\frac{4}{15}$.
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(Ⅲ)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少
P(K2≥k)0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.当实数x,y满足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$时,若存在(x,y)使得y≥4-ax成立,则实数a的取值范围是(  )
A.(-∞,$\frac{3}{2}$]B.(-∞,$\frac{3}{2}$)C.[$\frac{3}{2}$,+∞)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若某几何体的三视图如图所示,则此几何体的体积等于(  )
A.24B.30C.10D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\frac{π}{4}<α<\frac{3π}{4}$,0<β<$\frac{π}{4}$,且cos($\frac{π}{4}-α$)=$\frac{3}{5}$,sin($\frac{π}{4}+β$)=$\frac{5}{13}$,求cos2(α+β)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|x=f(x)},B={x|x=f[f(x)]},求证:A⊆B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出以下四个判断:
①线段AB在平面α内,则直线AB不一定在平面α内;
②两平面有一个公共点,则它们一定有无数个公共点;
③三条平行直线共面;
④有三个公共点的两平面重合.
其中不正确的判断的个数为3..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知tan(α+β)=$\frac{3}{5}$,tan(β-$\frac{π}{4}$)=$\frac{1}{4}$,那么tan(α+$\frac{π}{4}$)为(  )
A.$\frac{13}{18}$B.$\frac{13}{23}$C.$\frac{3}{18}$D.$\frac{7}{23}$

查看答案和解析>>

同步练习册答案