精英家教网 > 高中数学 > 题目详情
椭圆的焦距是       ,焦点坐标为        

试题分析:椭圆,所以焦距,焦点在x轴上,焦点为
点评:由椭圆方程可知焦点位置及基本量,再由可求得值,进而确定焦点焦距
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定圆的圆心为,动圆过点,且和圆相切,动圆的圆心的轨迹记为
(Ⅰ)求曲线的方程;
(Ⅱ)若点为曲线上一点,试探究直线:与曲线是否存在交点? 若存在,求出交点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为椭圆的左右顶点,在长轴上随机任取点,过作垂直于轴的直线交椭圆于点,则使的概率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左、右焦点分别为
上顶点为,在轴负半轴上有一点,满足,且

(Ⅰ)求椭圆的离心率;
(Ⅱ)是过三点的圆上的点,到直线的最大距离等于椭圆长轴的长,求椭圆的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为的直线与椭圆交于两点,线段的中垂线与轴相交于点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=8,则点M的轨迹是( )
A.线段B.直线C.椭圆D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦距为(   )
A. 10B. 5C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍,且经过点(2,1),平行于直线轴上的截距为,设直线交椭圆于两个不同点

(1)求椭圆方程;
(2)求证:对任意的的允许值,的内心在定直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆上一动点P到两焦点距离之和为(    )
A.10B.8C.6D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分) 如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且MD=PD.

(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度.

查看答案和解析>>

同步练习册答案