精英家教网 > 高中数学 > 题目详情
设椭圆的左、右焦点分别为
上顶点为,在轴负半轴上有一点,满足,且

(Ⅰ)求椭圆的离心率;
(Ⅱ)是过三点的圆上的点,到直线的最大距离等于椭圆长轴的长,求椭圆的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为的直线与椭圆交于两点,线段的中垂线与轴相交于点,求实数的取值范围.
(Ⅰ)(Ⅱ)(Ⅲ)

试题分析:解:(Ⅰ)连接,因为,所以
,故椭圆的离心率
(Ⅱ)由(1)知于是,
的外接圆圆心为),半径
到直线的最大距离等于,所以圆心到直线的距离为
所以,得  ,椭圆方程为
(Ⅲ)由(Ⅱ)知,
   代入消 
因为过点,所以恒成立

中点                        
时,为长轴,中点为原点,则      
中垂线方程
              
, 可得          
综上可知实数的取值范围是.              
点评:关于曲线的大题,难度相对都较大。对于题目涉及到关于直线和其他曲线的交点时,一般都可以用到跟与系数的关系式:在一元二次方程中,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,A,B是椭圆的两个顶点, ,直线AB的斜率为.求椭圆的方程;(2)设直线平行于AB,与x,y轴分别交于点M、N,与椭圆相交于C、D,
证明:的面积等于的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆过点,离心率为,左、右焦点分别为.点为直线上且不在轴上的任意一点,直线与椭圆的交点分别为为坐标原点.设直线的斜率分别为

(i)证明:
(ii)问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,直线l为圆的一条切线,且经过椭圆C的右焦点,直线l的倾斜角为,记椭圆C的离心率为e.
(1)求e的值;
(2)试判定原点关于l的对称点是否在椭圆上,并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:(a>b>0),则称以原点为圆心,r=的圆为椭圆C的“知己圆”。
(Ⅰ)若椭圆过点(0,1),离心率e=;求椭圆C方程及其“知己圆”的方程;
(Ⅱ)在(Ⅰ)的前提下,若过点(0,m)且斜率为1的直线截其“知己圆”的弦长为2,求m的值;
(Ⅲ)讨论椭圆C及其“知己圆”的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦距是       ,焦点坐标为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点坐标是(  )
A.(0,)、(0,)B. (0,-1)、(0,1)
C.(-1,0)、(1,0)D.(,0)、(,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左右焦点分别为,过焦点的直线交该椭圆于两点,若的内切圆面积为两点的坐标分别为,则的值为           

查看答案和解析>>

同步练习册答案