精英家教网 > 高中数学 > 题目详情
,若,且,则的取值范围是      

试题分析:由于a,b小于0,所以只需研究x<0的函数的性质,利用绝对值的意义去掉绝对值符号,得到分段函数;当x<0时,,然后结合二次函数的 心智可知
∴f(x)在(-∞,-)递减;在(-,0)递增
∵a<b<0,且f(a)=f(b),代入解析式得到a,b的范围
∴a≤-,0>b>-且a2-2="-" a2+2,解得a=-;-<b<0,∴0<ab<2
点评:解决该试题的关键是根据a,b小于0,所以只需研究x<0的函数的性质,利用绝对值的意义去掉绝对值符号,得到分段函数;得到f(x)在x<0上的单调性;判断出a,b的范围,利用f(a)=f(b),列出方程求出a的值,求出ab的范围.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数是定义域为上的奇函数,且
(1)求的解析式,    
(2)用定义证明:上是增函数,
(3)若实数满足,求实数的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(10分)已知函数,且 
(1)判断的奇偶性,并证明;
(2)判断上的单调性,并用定义证明;
(3)若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在R上的奇函数,满足,且在区间上是增函数,若方程在区间上有四个不同的根,则
A.6B.C.18D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数.
(1)求证:函数上是单调递增函数;
(2)当时,求函数在上的最值;
(3)函数上恒有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,且当的值域是,则的值是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在上的偶函数上单调递减,且,则满足的集合为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数在区间上有最大值10,则函数在区间上有( ) 
A.最大值-10B.最小值-10C.最小值—26D.最大值-26

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的奇函数,满足,且在上是增函数,则
A.B.
C.D.

查看答案和解析>>

同步练习册答案