精英家教网 > 高中数学 > 题目详情
17.已知cos2α=$\frac{4}{5}$,α∈($\frac{7π}{4}$,2π),求sin4α,sin($\frac{3π}{2}$-α)和tan$\frac{α}{2}$的值.

分析 由cos2α=$\frac{4}{5}$,α∈($\frac{7π}{4}$,2π)求得sin2α,利用二倍角的正弦求得sin4α;再由已知求得cosα,进一步得到sinα,利用诱导公式及半角公式求得sin($\frac{3π}{2}$-α)和tan$\frac{α}{2}$的值.

解答 解:∵α∈($\frac{7π}{4}$,2π),∴2α∈($\frac{7π}{2},4π$),
又cos2α=$\frac{4}{5}$,∴sin2α=-$\sqrt{1-co{s}^{2}2α}=-\sqrt{1-(\frac{4}{5})^{2}}=-\frac{3}{5}$.
则sin4α=2sin2αcos2α=2×$(-\frac{3}{5})×\frac{4}{5}=-\frac{24}{25}$;
由cos2α=$\frac{4}{5}$,得$2co{s}^{2}α-1=\frac{4}{5}$,解得cos$α=\frac{3\sqrt{10}}{10}$,∴sinα=-$\sqrt{1-(\frac{3\sqrt{10}}{10})^{2}}=-\frac{\sqrt{10}}{10}$.
则sin($\frac{3π}{2}$-α)=-cosα=-$\frac{3\sqrt{10}}{10}$;
tan$\frac{α}{2}$=$\frac{1-cosα}{sinα}$=$\frac{1-\frac{3\sqrt{10}}{10}}{-\frac{\sqrt{10}}{10}}=3-\sqrt{10}$.

点评 本题考查三角函数的化简求值,考查三角函数中的恒等变换应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=ex+ax在(0,+∞)上单调递增,则实数a的取值范围为(  )
A.[-1,+∞)B.(-1,+∞)C.[0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.甲,乙,丙三班各有20名学生,一次数学考试后,三个班学生的成绩与人数统计如表;
甲班成绩
分数708090100
人数5555
乙班成绩
分数708090100
人数6446
丙班成绩
分数708090100
人数4664
s1,s2,s3表示甲,乙,丙三个班本次考试成绩的标准差,则(  )
A.s2>s1>s3B.s2>s3>s1C.s1>s2>s3D.s3>s1>s2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知全集I=R,集合A={x|-1≤x<3},求∁IA.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.射击比赛中,每人射击3次,至少击中2次才合格,已知某选手每次射击击中的概率为0.4,且各次射击是否击中相互独立,则该选手合格的概率为(  )
A.0.064B.0.352C..0544D.0.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)的定义域为[1,2],则函数f(x)+f(x2)的定义域为(  )
A.[1,2]B.[1,$\sqrt{2}$]C.[-$\sqrt{2}$,$\sqrt{2}$]D.[-$\sqrt{2}$,-1]∪[1,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.有两个等差数列{an}和{bn},若$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{{b}_{1}+{b}_{2}+…{b}_{n}}$=$\frac{4n+6}{n+7}$(n∈N*),则$\frac{{a}_{3}+{a}_{6}+{a}_{9}+{a}_{14}}{{b}_{3}+{b}_{6}+{b}_{7}+{b}_{11}+{b}_{13}}$的值为(  )
A.$\frac{152}{75}$B.$\frac{14}{9}$C.$\frac{12}{5}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=a•($\frac{1}{3}$)x+bx2+cx(α∈R,b≠0,c∈R),若{x|f(x)=0}={x|f(f(x))=0}≠∅,则实数c的取值范围为(  )
A.(0,4)B.[0,4]C.(0,4]D.[0,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,输出的S的值为(  )
A.$\frac{3}{4}$B.$\frac{11}{14}$C.$\frac{53}{20}$D.$\frac{53}{80}$

查看答案和解析>>

同步练习册答案