精英家教网 > 高中数学 > 题目详情
函数f(x)=x(x-1)(x-2)(x-3)(x-4)(x-5),则f′(0)=
 
考点:导数的运算
专题:导数的综合应用
分析:利用导数的运算法则可得f′(x)=(x-1)(x-2)(x-3)(x-4)(x-5)+x[(x-2)(x-3)(x-4)(x-5)+(x-1)(x-3)(x-4)(x-5)+(x-1)(x-2)(x-4)(x-5)+(x-1)(x-2)(x-3)(x-5)+(x-1)(x-2)(x-3)(x-4)],即可得出.
解答: 解:f′(x)=(x-1)(x-2)(x-3)(x-4)(x-5)+x[(x-2)(x-3)(x-4)(x-5)+(x-1)(x-3)(x-4)(x-5)+(x-1)(x-2)(x-4)(x-5)+(x-1)(x-2)(x-3)(x-5)+(x-1)(x-2)(x-3)(x-4)],
∴f′(0)=-1×(-2)×(-3)×(-4)
=24.
故答案为:24.
点评:本题考查了导数的运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求证:m!+
(m+1)!
1!
+
(m+2)!
2!
+…+
(m+n)!
n!
=
(m+n+1)!
(m+1)n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,椭圆短轴的一个端点与两个焦点构成的三角形面积为
3

(1)求椭圆的方程;
(2)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于点Q(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:

方程(x+y-1)
x2+y2-4
=0表示什么曲线,请作图说明!

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c分别是A、B、C所对的边,且asinAsinB+bcos2A=
2
a.
(1)求
sinB
sinA
的值;
(2)若c2=b2+
3
a2,求∠B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(ωx+
π
6
)(ω>0),f(
π
6
)=f(
π
3
),且f(x)在区间(
π
12
6
)上有最大值无最小值,则ω=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(75°+θ)=
1
3
,θ为第三象限角,求cos(-225°-θ)+sin(435°+θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在探究函数f(x)=x3+
3
x
,x∈(-∞,0)∪(0,+∞)的最值中,
(Ⅰ)先探究函数y=f(x)在区间(0,+∞)上的最值,列表如下:
x0.10.20.50.70.911.11.21.32345
y30.015.016.134.64.0644.064.234.509.52864.75125.6
观察表中y值随x值变化的趋势,知x=
 
时,f(x)有最小值为
 

(Ⅱ)再依次探究函数y=f(x)在区间(-∞,0)上以及区间(-∞,0)∪(0,+∞)上的最值情况(是否有最值?是最大值或最小值?),请写出你的探究结论,不必证明;
(Ⅲ)设g(x)=3x2+
1
x2
,若g(2x)-k•2x≥0在x∈[-1,1]上恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点到直线x-y+2
2
=0的距离为3.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆与直线y=x+m相交于不同的两点M、N,问是否存在实数m使|AM|=|AN|;若存在求出m的值;若不存在说明理由.

查看答案和解析>>

同步练习册答案