精英家教网 > 高中数学 > 题目详情

(12分)如图,已知在直四棱柱中,


(1)求证:平面
(2)设上一点,试确定的位置,使平面,并说明理由.

见解析。

解析试题分析:(1)因为此几何是一个直棱柱,所以.根据线面垂直的判定定理,所以只需再证即可.
(2)从图上分析可确定E应为DC的中点,然后证明:四边形A1D1EB是平行四边形,即可得到D1E//A1B,
根据线面平行的判定定理,问题得证.
(1)设的中点,连结,则四边形为正方形,
.故,即.又平面
(2)证明:DC的中点即为E点,连D1E,BE  
所以四边形ABED是平行四边形所以ADBE,又ADA1D1A1D1
所以四边形A1D1EB是平行四边形 D1E//A1B ,所以D1E//平面A1BD.
考点:线线,线面,面面平行与垂直的判定与性质.
点评:解本小题的关键是掌握线线,线面,面面垂直的判定与性质,然后从图上分析需要证明的条件,要时刻想着往判定定理上进行转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)
已知是四边形所在平面外一点,四边形的菱形,侧面
为正三角形,且平面平面.
(1)若边的中点,求证:平面.
(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,在四棱锥中,平面PAD⊥平面 ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点

求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(20) (本题满分14分) 已知正四棱锥P-ABCD中,底面是边长为2 的正方形,高为.M为线段PC的中点.

(Ⅰ) 求证:PA∥平面MDB;
(Ⅱ) N为AP的中点,求CN与平面MBD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面,底面是菱形,点O是对角线的交点,的中点,.

(1) 求证:平面;
(2) 平面平面;
(3) 当四棱锥的体积等于时,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)如图所示,在四棱锥中,平面
平分的中点.

求证:(1)平面
(2)平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,四棱锥P—ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,点E在棱PA上,且PE=2EA。
(1)求直线PC与平面PAD所成角的余弦值;(6分)
(2)求证:PC//平面EBD;(4分)
(3)求二面角A—BE—D的余弦值.(4分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面为平行四边形,⊥底面.①证明:平面平面; ②若二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°.
(I)求二面角P—BC—A的正切值;
(II)求二面角C—PB—A的正切值.

查看答案和解析>>

同步练习册答案