精英家教网 > 高中数学 > 题目详情
对定义域分别是Df、Dg的函数y=f(x)、y=g(x),规定:函数h(x)=
f(x)•g(x)  当x∈Df且x∈Dg
f(x)          当x∈Df且x∉Dg
g(x)          当x∉Df且x∈Dg

(1)若函数f(x)=
1
x
,g(x)=x2+4,写出函数h(x)的解析式;
(2)求问题(1)中函数h(x)的值域.
分析:(1)由于函数f(x)=
1
x
,g(x)=x2+4,对x进行分类讨论:当x≠0时,h(x)=f(x)g(x);当x=0时,h(x)=x2+4.从而得出h(x)的解析式;
(2)对于x的取值进行分类:若x>0;若x<0;分别求得它们的最值,最后综合即得函数h(x)的值域.
解答:解:(1)由于函数f(x)=
1
x
,g(x)=x2+4,根据题意得:
当x≠0时,h(x)=f(x)g(x)=
x 2+4
x

当x=0时,h(x)=x2+4.
h(x)=
x 2+4
x
,x≠0
x 2+4,x=0
…(5分)
(2)当x≠0时,h(x)=x+
4
x

若x>0⇒h(x)≥4其中等号当x=2时成立,…(8分)
若x<0⇒h(x)≤-4其中等号当x=-2时成立,…(10分)
∴函数h(x)的值域为(-∞,-4]∪[4,+∞)…(12分)
点评:本小题主要考查函数的值域、函数解析式的求解及常用方法等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对定义域分别是Df、Dg的函数y=f(x),y=g(x),规定:函数h(x)=
f(x)•g(x)    当x∈Df且x∈Dg
1      当x∈Df且x∉Dg
-1   当x∉Df且x∈Dg

(1)若f(α)=sinα•cosα,g(α)=cscα,写出h(α)的解析式;
(2)写出问题(1)中h(α)的取值范围;
(3)若g(x)=f(x+α),其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos4x,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

对定义域分别是Df、Dg的函数y=f(x)、y=g(x),规定:函数h(x)=
f(x)•g(x)  (当x∈Df且x∈Dg)
f(x)  (当x∈Df且x∉Dg)
g(x)  (当x∉Df且x∈Dg)

(Ⅰ)若函数f(x)=
1
x-1
,g(x)=x2,写出函数h(x)的解析式;
(Ⅱ)求问题(1)中函数h(x)的值域;
(Ⅲ)若g(x)=f(x+α),其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos4x,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

对定义域分别是Df、Dg的函数y=f(x)、y=g(x),规定:函数h(x)=

   

    若函数f(x)=-2x+3,x≥1;g(x)=x-2,x∈R,写出函数h(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

对定义域分别是Df,Dg的函数y=f(x),y=g(x).规定:

函数h(x)=

(1)若函数f(x)=,g(x)=x2,写出函数h(x)的解析式;

(2)求问题(1)中函数h(x)的值域;

(3)若g(x)=f(x+a),其中a是常数,且a∈[0,π],请设计一个定义域为R的函数y=f(x)及一个a的值,使得h(x)=cos4x,并予以证明.

查看答案和解析>>

同步练习册答案