精英家教网 > 高中数学 > 题目详情
对定义域分别是Df、Dg的函数y=f(x)、y=g(x),规定:函数h(x)=

   

    若函数f(x)=-2x+3,x≥1;g(x)=x-2,x∈R,写出函数h(x)的解析式.

思路解析:此题是一道非常基础性的求分段函数解析式的题目,考查分段函数的基本性质,要以定义域为平台进行分类.一般情况下,“段”和“段”的定义域不能有交集.由于函数g(x)=x-2的定义域为R,∴对定义域的分类要以函数f(x)=-2x+3,x≥1的定义域为基础分为两类,一类是x≥1,另一类是x<1.

解:当x≥1时,x∈Df且x∈Dg

∴h(x)=f(x)g(x)=(-2x+3)(x-2),当x<1时,xDf且x∈Dg

∴h(x)=g(x)=x-2.

因此,h(x)=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对定义域分别是Df、Dg的函数y=f(x)、y=g(x),规定:函数h(x)=
f(x)•g(x)  当x∈Df且x∈Dg
f(x)          当x∈Df且x∉Dg
g(x)          当x∉Df且x∈Dg

(1)若函数f(x)=
1
x
,g(x)=x2+4,写出函数h(x)的解析式;
(2)求问题(1)中函数h(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

对定义域分别是Df、Dg的函数y=f(x),y=g(x),规定:函数h(x)=
f(x)•g(x)    当x∈Df且x∈Dg
1      当x∈Df且x∉Dg
-1   当x∉Df且x∈Dg

(1)若f(α)=sinα•cosα,g(α)=cscα,写出h(α)的解析式;
(2)写出问题(1)中h(α)的取值范围;
(3)若g(x)=f(x+α),其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos4x,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

对定义域分别是Df、Dg的函数y=f(x)、y=g(x),规定:函数h(x)=
f(x)•g(x)  (当x∈Df且x∈Dg)
f(x)  (当x∈Df且x∉Dg)
g(x)  (当x∉Df且x∈Dg)

(Ⅰ)若函数f(x)=
1
x-1
,g(x)=x2,写出函数h(x)的解析式;
(Ⅱ)求问题(1)中函数h(x)的值域;
(Ⅲ)若g(x)=f(x+α),其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos4x,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

对定义域分别是Df,Dg的函数y=f(x),y=g(x).规定:

函数h(x)=

(1)若函数f(x)=,g(x)=x2,写出函数h(x)的解析式;

(2)求问题(1)中函数h(x)的值域;

(3)若g(x)=f(x+a),其中a是常数,且a∈[0,π],请设计一个定义域为R的函数y=f(x)及一个a的值,使得h(x)=cos4x,并予以证明.

查看答案和解析>>

同步练习册答案