【题目】已知双曲线
的离心率为2,过点
、斜率为1的直线
与双曲线
交于
、
两点且
,
.
(1)求双曲线方程。
(2)设
为双曲线
右支上动点,
为双曲线
的右焦点,在
轴负半轴上是否存在定点
,使得
?若存在,求出点
的坐标;若不存在,请说明理由。
科目:高中数学 来源: 题型:
【题目】西北某省会城市计划新修一座城市运动公园,设计平面如图所示:其为五边形
,其中三角形区域
为球类活动场所;四边形
为文艺活动场所,
,为运动小道(不考虑宽度)
,
,
千米.
![]()
(1)求小道
的长度;
(2)求球类活动场所
的面积最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要条件;
(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100名顾客的相关数据,如下表所示:
已知这100位顾客中一次性购物超过8件的顾客占55%.
一次性购物 | 1至4件 | 5至8件 | 9至12件 | 13至16件 | 17件及以上 |
顾客数(人) |
| 30 | 25 |
| 10 |
结算时间(分/人) | 1 | 1.5 | 2 | 2.5 | 3 |
(1)求
,
的值;
(2)求一位顾客一次购物的结算时间超过2分钟的概率(频率代替概率).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某投资公司在
年年初准备将
万元投资到“低碳”项目上,现有两个项目供选择:
项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利
,也可能亏损
,且这两种情况发生的概率分别为
和
;
项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利
,可能损失
,也可能不赔不赚,且这三种情况发生的概率分别为
、
和
.
针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com