精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)判断函数的奇偶性,并说明理由;

2)若上的最小值为3,求实数的值以及相应的的值.

【答案】1时,函数为偶函数;时,函数为奇函数;时,函数为非奇非偶函数;理由见解析;(2

【解析】

1)分为三种情况,探究 的关系,即可知奇偶性;

2)令,则 最小值为3,结合导数探究当 取何值时,函数取最小值,进而可求出的值以及相应的的值.

解:(1)由题意知,的定义域为

时,,则 为偶函数;

时,,则 为奇函数;

时,,故此时为非奇非偶函数.

2)设 ,由题意知, 最小值为3..

时,,则 递增,此时, 最小值

,解得 矛盾,故舍去;

时,令,解得 (舍去);当,即 时,

恒成立,由之前的讨论可知,此时矛盾,舍去;

,即时,在 ,在

所以在 递减,在 递增,

则当 时,有最小值,即 ,解得,此时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线,曲线 .以极点为坐标原点,极轴为轴正半轴建立直角坐标系,曲线的参数方程为为参数).

(1)求的直角坐标方程;

(2)交于不同四点,这四点在上的排列顺次为,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且

(1)求证:数列为等比数列,并求出数列的通项公式;

(2)是否存在实数,对任意,不等式恒成立?若存在,求出的取值范围,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有三个乡镇,分别位于一个矩形的两个顶点MN的中点S处,,现要在该矩形的区域内(含边界),且与MN等距离的一点O处设一个宣讲站,记O点到三个乡镇的距离之和为

1)设,试将L表示为x的函数并写出其定义域;

2)试利用(1)的函数关系式确定宣讲站O的位置,使宣讲站O到三个乡镇的距离之和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设整数模2014互不同余,整数模2014也互不同余.证明:可将重新排列为,使得模4028互不同余.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表中的数阵为“森德拉姆数筛”,其特点是每行每列都成等差数列,则数字2019在表中出现的次数为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论:

①命题“”的否定是“”;

②若是真命题,则可能是真命题;

③“”是“”的充要条件;

④当时,幂函数在区间上单调递减.

其中正确的是

A. ①③ B. ②④ C. ①④ D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的离心率为2,过点、斜率为1的直线与双曲线交于两点且.

(1)求双曲线方程。

(2)设为双曲线右支上动点,为双曲线的右焦点,在轴负半轴上是否存在定点,使得?若存在,求出点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知4(tanA+tanB)=cosC的最小值为__________

查看答案和解析>>

同步练习册答案