精英家教网 > 高中数学 > 题目详情
7.已知正方方体ABCD-A1B1C1D1
(1)异面直线BA1和CB1 的夹角是多少?
(2)A1B和平面CDA1B1所成的角?
(3)平面CDA1B1和平面ABCD所成二面角的大小?
(此题写出必要的步骤或说明,画出必要的辅助线)

分析 (1)连结A1D,BD,由A1D∥B1C,得∠BA1D是异面直线BA1和CB1 的夹角,由此能求出异面直线BA1和CB1 的夹角.
 (2)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出A1B和平面CDA1B1所成的角.
(3)求出平面CDA1B1和的法向量和平面ABCD的法向量,利用向量法能求出平面CDA1B1和平面ABCD所成二面角的大小.

解答 解:(1)连结A1D,BD,∵A1D∥B1C,
∴∠BA1D是异面直线BA1和CB1 的夹角,
∵A1D=A1B=AB,
∴∠BA1D=60°.
∴异面直线BA1和CB1 的夹角是60°.
 (2)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1棱长为1,
则A1(1,0,1),B(1,1,0),C(0,1,0),D(0,0,0),
$\overrightarrow{{A}_{1}B}$=(0,1,-1),$\overrightarrow{D{A}_{1}}$=(1,0,1),$\overrightarrow{DC}$=(0,1,0),
设平面CDA1B1的法向量$\overrightarrow{n}$=(x,y,x),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{A}_{1}}=x+z=0}\\{\overrightarrow{n}•\overrightarrow{DC}=y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,-1),
设A1B和平面CDA1B1所成的角为θ,
则sinθ=$\frac{|\overrightarrow{A{B}_{1}}•\overrightarrow{n}|}{|\overrightarrow{A{B}_{1}}|•|\overrightarrow{n}|}$=$\frac{1}{2}$,∴θ=30°.
∴A1B和平面CDA1B1所成的角为30°.
(3)平面CDA1B1和的法向量$\overrightarrow{n}$=(1,0,-1),
平面ABCD的法向量$\overrightarrow{m}$=(0,0,1),
设平面CDA1B1和平面ABCD所成二面角的大小为α,
则cosα=$\frac{|\overrightarrow{n}•\overrightarrow{m}|}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$.
∴α=45°.
∴平面CDA1B1和平面ABCD所成二面角的大小为45°.

点评 本题考查线线角、线面角、面面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设f(x)=$\frac{x^2}{{1+{x^2}}}$,则f($\frac{1}{2016}$)+f($\frac{1}{2015}$)+…+f(1)+f(2)+…+f(2016)=(  )
A.4031B.$\frac{4031}{2}$C.4032D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的图象与直线y=-2的两个相邻公共点之间的距离等于π.
(1)求f(x)的单调递增区间;
(2)若x∈[${\frac{π}{6}$,$\frac{π}{2}}$],求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)满足f(n+1)=$\frac{3f(n)+n}{3}$(n∈N*),且f(1)=1,则f(18)=(  )
A.20B.38C.52D.35

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4,x≥0}\\{x+4,x<0}\end{array}\right.$.
(1)求f(f(-2));
(2)画出函数的图象并求出函数f(x)在区间(-2,2)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=cos2x-$\sqrt{3}$sinxcosx-$\frac{1}{2}$可以化为f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈(0,π)).
(1)求出A,ω,φ的值并求函数f(x)的单调增区间;
(2)若等腰△ABC中,A=φ,a=2,求角B,边c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)-f(x),某公司每月最多生产100台报警系统装置.生产x台的收入函数为R(x)=3000x-20x2(单位元),其成本函数为C(x)=600x+2000(单位元),利润等于收入与成本之差.
①求出利润函数p(x)及其边际利润函数Mp(x)
②求出的利润函数p(x)及其边际利润函数Mp(x)是否具有相同的最大值;
③你认为本题中边际利润函数Mp(x)最大值的实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知实数a,b满足ln(b+1)+a-3b=0,实数c,d满足2d-c+$\sqrt{5}$=0,则(a-c)2+(b-d)2的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若数列{an}中,an=46-3n,则当Sn取最大值时,n=(  )
A.14B.15C.15或16D.16

查看答案和解析>>

同步练习册答案