精英家教网 > 高中数学 > 题目详情
16.已知点P(x,y)在不等式组$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$表示的平面区域内运动,则z=x-y的最大值是(  )
A.-1B.-2C.1D.2

分析 ①画可行域;②z为目标函数的纵截距;③画直线z=x-y.平移可得直线过A或B时z有最值.

解答 解:画不等式组$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$表的可行域如图,
画直线z=x-y,
平移直线z=x-y过点B(2,0)时z有最大值2;
故选:D.

点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某渔场有一边长为20m的正三角形湖面ABC(如图所示),计划筑一条笔直的堤坝DE将水面分成面积相等的两部分,以便进行两类水产品养殖试验(D在AB上,E在AC上).
(1)为了节约开支,堤坝应尽可能短,请问该如何设计?堤坝最短为多少?
(2)将DE设计为景观路线,堤坝应尽可能长,请问又该如何设计?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设Sn为数列{cn}的前n项和,an=2n,bn=50-3n,cn=$\left\{\begin{array}{l}{{a}_{n}{,a}_{n}{>b}_{n}}\\{{b}_{n}{,a}_{n}{<b}_{n}}\end{array}\right.$.
(1)求c4与c8的等差中项;
(2)当n>5时,设数列{Sn}的前n项和为Tn
(ⅰ)求Tn
(ⅱ)当n>5时,判断数列{Tn-34ln}的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=alnx+b(a,b∈R),曲线f(x)在x=1处的切线方程为x-y-1=0.
(1)求a,b的值;  
(2)证明:f(x)+$\frac{1}{x}$≥1;
(3)已知满足xlnx=1的常数为k.令函数g(x)=mex+f(x)(其中e是自然对数的底数,e=2.71828…),若x=x0是g(x)的极值点,且g(x)≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若(2x-1)2017=a0+a1x+a2x2+…+a2017x2017,则a0+a1+2a2+…+2017a2017=4033.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若P(x,y)在椭圆$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)上,则x+2y的取值范围为(  )
A.(-∞,2$\sqrt{2}$)B.[2$\sqrt{2}$,+∞)C.[-2$\sqrt{2}$,2$\sqrt{2}$]D.(-∞,-2$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$=(4,5cosα),$\overrightarrow{b}$=(3,-4tanα).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求sinα的值;
(2)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,且α为锐角,求cos(2α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知定义在R上的函数f(x)=asinωx+bcosωx(ω>0)可利用辅助角公式化为f(x)=$\sqrt{{a}^{2}+{b}^{2}}$sin(ωx+φ) (其中tanφ=$\frac{b}{a}$).若f(x)的周期为π,且对一切x∈R,都有f(x)$≤f(\frac{π}{12})=4$;
(1)求函数f(x)的表达式;
(2)若g(x)=f($\frac{π}{6}-x$),求函数g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a>0,函数f(x)=ax2-x,g(x)=lnx.
(1)若$a=\frac{1}{2}$,求函数y=f(x)-2g(x)的极值;
(2)设b>0,f'(x)是f(x)的导数,g'(x)是g(x)的导数,h(x)=f'(x)+bg'(x)+1,图象的最低
点坐标为(2,8),找出最大的实数m,满足对于任意正实数x1,x2且x1+x2=1,h(x1)h(x2)≥m成立.

查看答案和解析>>

同步练习册答案